Patents Examined by Helena H Seraydaryan
  • Patent number: 11353596
    Abstract: A global positioning system (GPS) receiver and system for determining a geographical location associated with the GPS receiver using less than four GPS signals. The system can comprise a constraint module configured to receive one or more constraints that describe at least one characteristic of a GPS receiver when a number of GPS satellites within a line of sight to the GPS receiver is below a defined value. The system can further comprise a pseudo range calculation module configured to calculate a plurality of pseudo ranges between the GPS receiver and the number GPS satellites, wherein the plurality of pseudo ranges are to various orbital positions of the GPS satellites over a period of time; and a geographical location module configured to determine the geographical location of the GPS receiver using the plurality of pseudo ranges and known constraints of motion associated with the GPS receiver.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: June 7, 2022
    Assignee: Raytheon Company
    Inventors: Ian S. Robinson, Andrew M. Hautzik, Brandon Crow
  • Patent number: 11327183
    Abstract: An antenna system includes a right-hand circularly polarized antenna for receiving Global Navigation Satellite System (GNSS) signals and located on a receiver housing; a vertical semitransparent screen for providing an Down/Up ratio DU 9 ? 0 = DU ? ( ? e = 9 ? 0 ? ) = F ? ( - 9 ? 0 ? ) F ? ( 9 ? 0 ? ) of ?13 dB or better for at least some GNSS frequencies; the semitransparent screen being connected to a ground plane of the antenna; the ground plane being connected to a conductive receiver housing; the semitransparent screen further comprising a horizontal slot to which sets of lumped impedance elements are connected. Each set includes several lumped elements; where the lumped elements are capacitors and/or inductors and/or resistors; where the lumped elements in each set are connected in parallel or series; and the semitransparent screen including at least 4 segments arranged symmetrically around the center of the antenna and connected to each other.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: May 10, 2022
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Dmitry Vitalievich Tatarnikov, Alexey Anatolievich Generalov, Andrey Vitalievich Astakhov
  • Patent number: 11313962
    Abstract: Disclosed herein is a sensor processing system including an acquisition unit, a time series analysis unit, and a decision unit. The acquisition unit acquires measurement data from a measuring unit. The measuring unit measures a physical quantity, of which a value varies depending on whether a human is present in, or absent from, an object space. The time series analysis unit obtains an analysis model for a time series analysis in which the measurement data acquired at a predetermined timing is represented by multiple items, acquired before the predetermined timing, of the measurement data. The decision unit decides, depending on a decision condition including a condition concerning a coefficient of the analysis model, whether the human is present or absent at the predetermined timing.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 26, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTV CORPORATION OF AMERICA
    Inventors: Masaru Yamaoka, Toshiaki Tanaka, Kenji Masuda, Atsushi Takahashi, Hidehiko Ichikawa
  • Patent number: 11280881
    Abstract: A radar system is disclosed for detecting profiles of objects, particularly in a vicinity of a machine work tool. The radar system uses a direct digital synthesiser to generate an intermediate frequency off-set frequency. It also uses an up-converter comprising a quadrature mixer, single-side mixer or complex mixer to add the off-set frequency to the transmitted frequency. It further uses a down-converter in the receive path driven by the off-set frequency as a local oscillator. The radar system enables received information to be transferred to the intermediate frequency. This in turn can be sampled synchronously in such a way as to provide a complex data stream carrying amplitude and phase information. The radar system is implementable with a single transmit channel and a single receive channel.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 22, 2022
    Assignee: RodRadar Ltd.
    Inventors: Simon Conway, John Roulston
  • Patent number: 11255962
    Abstract: An automotive testing method includes acquiring radar sensor data responsive to a radar excitation signal generated by a radar transmitting unit, forwarding the acquired radar sensor data to an electronic system of a radar receiving unit, generating radar data from the forwarded radar sensor data, and processing the radar data, wherein the step of acquiring radar sensor data includes generating synthetic radar data, the synthetic radar data being forwarded as radar sensor data to the electronic system of the radar receiving unit, where the synthetic radar data includes reflection signals, preferably all reflection signals, in a complex time series, that succeed each other and have the same temporal behavior within a synthetic period that lasts at least an order longer than a time period of the radar excitation signal.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 22, 2022
    Assignee: SIEMENS INDUSTRY SOFTWARE AND SERVICES B.V.
    Inventors: Martinus Fransiscus Hendricus Wantenaar, Lucas Johannes Van Ewijk, Thijs Van Putten
  • Patent number: 11255949
    Abstract: An integrated circuit (IC) is provided with a plurality of diode based mm-wave peak voltage detectors (PVD)s. During a testing phase, a multi-point low frequency calibration test is performed on one or more of the PVDs to determine and store a set of alternating current (AC) coefficients. During operation of the IC, a current-voltage sweep is performed on a selected one of the PVDs to determine a process and temperature direct current (DC) coefficient. A peak voltage produced by the PVD in response to a high frequency radio frequency (RF) signal is measured to produce a first measured voltage. An approximate power of the RF signal is calculated by adjusting the first measured voltage using the DC coefficient and the AC coefficient.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: February 22, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vito Giannini, Brian Paul Ginsburg
  • Patent number: 11215704
    Abstract: An ultra-wideband (“UWB”) communication system comprising a transmitter and a receiver having two antennas. An UWB signal transmitted by the transmitter is received at each of the antennas. By comparing the carrier phases of the received signals, the phase difference can be determined. From this phase difference and the known distance, d, between the antennas, the Cartesian (x,y) location of the transmitter relative to the receiver can be directly determined.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: January 4, 2022
    Assignee: DecaWave, Ltd.
    Inventors: Michael McLaughlin, Gavin Marrow, Igor Dotlic
  • Patent number: 11175407
    Abstract: Geofence crossing-based control systems and techniques are described herein. For example, a geofence crossing control technique may include receiving a location signal indicative of a range of locations in which a mobile computing device is located; receiving a velocity signal indicative of a speed and direction of the mobile computing device; generating, for each of a plurality of candidate geofence crossing times, a performance indicator based on the location signal, the velocity signal, and a boundary of the geofence; selecting a geofence crossing time from the plurality of candidate geofence crossing times based on the performance indicators; and transmitting a control signal representative of the geofence crossing time. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: YuHuan Huang, Ke Han, Ke Ding
  • Patent number: 11169245
    Abstract: A method for simulating a trajectory of a radar target includes the procedures of determining a simulated trajectory of the simulated target and determining a simulating vehicle trajectory for a simulating vehicle. The simulating vehicle trajectory is defined according to a simulation profile. The simulation profile at least includes a spatial simulation profile and a signal delay profile. The method further includes the procedures of maneuvering the simulating vehicle according the spatial simulation profile, receiving a radar signal by the simulating vehicle and retransmitting a signal toward the radar at least according to the signal delay profile.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: November 9, 2021
    Assignee: ELBIT SYSTEMS EW AND SIGINT-ELISRA LTD
    Inventors: Roy Glass, Reuel Manela
  • Patent number: 11163052
    Abstract: In an example, the present invention provides an FMCW sensor apparatus. The apparatus has at least three transceiver modules. Each of the transceiver modules has an antenna array to be configured to sense a back scatter of electromagnetic energy from spatial location of a zero degree location in relation to a mid point of the device through a 360 degrees range where each antenna array is configured to sense a 120 degree range. In an example, each of the antenna array has a support member, a plurality of receiving antenna, a receiver integrated circuit coupled to the receiving antenna and configured to receive an incoming FMCW signal and covert the incoming FMCW signal into a base band signal, and a plurality of transmitting antenna. Each antenna array has a transmitter integrated circuit coupled to the transmitting antenna to transmit an outgoing FMCW signal.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 2, 2021
    Assignee: Koko Home, Inc.
    Inventors: Bradley Michael Eckert, Luca Rigazio, Neal Khosla, Kiran Joshi, Lenin Patra
  • Patent number: 11163050
    Abstract: Techniques for estimating one or more backscatter signals reflected from one or more objects are disclosed. In one example, a backscatter sensor includes, in part, a receiver for receiving a composite signal comprising one or more reflections of a transmitted signal, each reflection being reflected by one of a plurality of objects; and a processor configured to estimate at least a first backscatter component of the composite signal using a progressive interference cancellation technique. The first backscatter component of the composite signal corresponds to a reflection of the transmitted signal from a first object. In one embodiment, the backscatter sensor includes multiple receivers and/or one or more transmitters.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: November 2, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dinesh Bharadia, Kiran Joshi, Sachin Katti
  • Patent number: 11142340
    Abstract: An apparatus interfaces with a light stanchion associated with a runway. The apparatus can include a first interface for attaching to the light stanchion, second interface for attaching to runway light, and a radar reflective member. The radar reflective member can be a corner reflector. The radar reflector can be part of set of reflectors arranged in accordance with visual approach slope indications or precision approach path indications.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: October 12, 2021
    Assignee: Rockwell Collins, Inc.
    Inventors: Carlo L. Tiana, Robert B. Wood, David L. Flanders, Lu Bai
  • Patent number: 11137476
    Abstract: A frequency modulated continuous wave (FMCW) radar system is provided that includes a receiver configured to generate a digital intermediate frequency (IF) signal, and an interference monitoring component coupled to the receiver to receive the digital IF signal, in which the interference monitoring component is configured to monitor at least one sub-band in the digital IF signal for interference, in which the at least one sub-band does not include a radar signal.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 5, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian Paul Ginsburg, Karthik Subburaj, Karthik Ramasubramanian, Sachin Bhardwaj, Sriram Murali, Sandeep Rao
  • Patent number: 11119178
    Abstract: According to examples of the presently disclosed subject matter, there is provided a system for estimating a source location of a projectile, comprising an optics an optics subsystem, a radar subsystem and a processor. The processor is adapted to use range and velocity measurements obtained from data provided by the radar subsystem, a source direction and an event start time obtained from data provided by the optical subsystem and a predefined kinematic model for the projectile for estimating a range to a source location of the projectile.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: September 14, 2021
    Assignee: ELTA SYSTEMS LTD.
    Inventor: Gil Tidhar
  • Patent number: 11086004
    Abstract: Radar frequency range signals (e.g., 1 to 100 gigahertz) are often generated by upconverting a reference frequency to a transmission frequency, and a received signal may be downconverted to analyze information encoded on the transmission via modulation. Modulation may be achieved via a fractional frequency divider in a phase-locked loop, but fractional spurs may reduce the signal-to-noise ratio. Additionally, the ramp slope may vary due to phase-locked loop momentum. Instead, a clock generator may generate clock signals for a digital front end comprising a digital signal modulator that generates modulated digital values comprising quadrature representations of a radar modulation signal, which are encoded by a radiofrequency digital-to-analog converter (RF-DAC). The RF-DAC analog signal may be upconverted to a radar frequency and transmitted. A receiver may receive, downconvert, and analyze a reflection of the radar transmission, e.g.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: August 10, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Niels Christoffers, Sanaz Hadipour Abkenar, Soumya Krishnapuram Sireesh, Christoph Wagner
  • Patent number: 11079489
    Abstract: In some examples, a radar system is configured to mount on an ownship vehicle for interleaving a weather detection mode and an object detection mode. The radar system comprises a phased-array radar device configured to receive weather signals in the weather detection mode, receive sensing signals in the object detection mode, and interleave the weather detection mode and the object detection mode. The radar system further comprises processing circuitry configured to determine weather conditions based on the received weather signals and detect an object based on the received sensing signals.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 3, 2021
    Assignee: Honeywell International Inc.
    Inventor: Lawrence J. Surace
  • Patent number: 11067701
    Abstract: A positioning control method of a positioning device worn on a user?s body includes switching a positioning mode to a swimming mode and executing a positioning operation for the swimming mode when the positioning mode is switched to the swimming mode.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 20, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Akifumi Hayashi, Fumikazu Sano
  • Patent number: 11063625
    Abstract: Wireless devices, and particularly mobile devices such as cellphones, PDAs, computers, navigation devices, etc., as well as other devices which transmit or receive data or other signals at multiple frequency bands utilize at least one steerable antenna, and may be configured to transmit and receive using plurality of different bands (e.g., GSM cellular communication band; Bluetooth short range communication band; ultrawideband (UWB) communications, etc.). These wireless devices can determine zones or spans of directions in which to avoid radiating beams at 10 GHz or above, and can receive signals on either the steerable antenna or another antenna. In addition, the wireless devices can be configured for radiating in a pattern that is different from the receiving pattern.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 13, 2021
    Inventor: Theodore S. Rappaport
  • Patent number: 11050133
    Abstract: A system comprising: an interrogator device, comprising: a first transmit antenna configured to transmit radio-frequency (RF) signals circularly polarized in a first rotational direction; and a first receive antenna configured to receive RF signals circularly polarized in a second rotational direction different from the first rotational direction; and a target device, comprising: a second receive antenna configured to receive RF signals circularly polarized in the first rotational direction and a second transmit antenna configured to transmit, to the interrogator device, RF signals circularly polarized in the second rotational direction.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 29, 2021
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 11047974
    Abstract: A system for virtual Doppler and/or aperture enhancement, preferably including one or more transmitter arrays, receiver arrays, and/or signal processors, and optionally including one or more velocity sensing modules. A method for virtual Doppler and/or aperture enhancement, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or analyzing the set of received probe signals.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: June 29, 2021
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong