Patents Examined by Hoa Q. Pham
  • Patent number: 10545098
    Abstract: A foreign substance inspection apparatus performs foreign substance detection processing of detecting a foreign substance present on a surface of a substrate. The apparatus includes a detector that includes a projector configured to project light onto the surface and an optical receiver configured to receive scattered light from the surface, a scanning mechanism configured to scan a position on the surface onto which the light is projected by the projector, and a controller configured to control the foreign substance detection processing so that detection of the foreign substance is performed on a detection region which is a region excluding, from the surface, an exclusion region where a step is present thereon, wherein the controller controls the projection by the projector so that light is not projected to the step.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Kenichi Kobayashi
  • Patent number: 10539411
    Abstract: A sample shape measuring apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and a processing apparatus. A scanning unit relatively moves a light spot and the sample. Illumination light applied to the sample is transmitted through the sample, and light transmitted through the sample is incident on the detection optical system. The light detection element receives light. The illumination optical system or the detection optical system includes an optical member. The processing apparatus obtains a quantity of light based on a received light, calculates at least one of a difference and a ratio between the quantity of light and a reference quantity of light, calculates an amount of tilt at a surface of the sample, and calculates a shape of the sample from the amount of tilt.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 21, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Mayumi Odaira, Yoshimasa Suzuki
  • Patent number: 10533948
    Abstract: A carrier for use in single molecule detection is related. The carrier includes a substrate; a middle layer, on the substrate; and a metal layer, on the middle layer; wherein the substrate is a flexible substrate, the middle layer includes a base and a patterned bulge on the base, the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge, the carrier further includes a carbon nanotube composite structure between the metal layer and the patterned bulge.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10534073
    Abstract: A method for characterizing an object using distance measurement includes: determining elevation profiles using distance measurement, and evaluating the determined elevation profiles for a characterization of the object, the characterization includes a position and/or at least one object-specific parameter of the object.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: January 14, 2020
    Assignee: Phenospex B. V.
    Inventors: Uladzimir Zhokhavets, Grégoire Martin Hummel, Stefan Schwartz
  • Patent number: 10520421
    Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: December 31, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Edward Sinofsky, Manish Deshpande
  • Patent number: 10522426
    Abstract: This system and method minimize an effect of haze to signal-to-noise ratio and compensate for haze on the haze map. A first mask with a first aperture is disposed along the path of the light beam between a light source and a collector. A first actuator moves the first mask along a tangential direction. A second mask with a second aperture is disposed along the path of the light beam between the first mask and the collector. A second actuator moves the second mask along a radial direction perpendicular to the tangential direction. The first mask and the second mask are independently movable along the tangential direction and the radial direction using the first actuator and the second actuator.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 31, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Hongxing Yuan, Dimitry Pokras, William VanHoomissen, Douglas Chan
  • Patent number: 10514249
    Abstract: The present invention relates to an optical displacement sensor comprising a first at least partially reflective surface and a second surface having a diffractive pattern, the surfaces being provided on elements having a variable distance between them, each surface pair defining a cavity between them. The sensor also comprising at least one light source transmitting light at least one a chosen wavelength range into said cavities and at least one light detector receiving light from the cavities, wherein said diffractive patterns are adapted to direct light toward at least one detector provided in a known position relative to said diffractive surfaces.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Sintef TTO AS
    Inventors: Matthieu Lacolle, Ib-Rune Johansen, Thor Bakke, Ole-Herman Bjor
  • Patent number: 10514444
    Abstract: A light detection and ranging (LIDAR) transmitter includes a plurality of light emitters that generate a plurality of optical beams. A first lens is positioned in an optical path of the plurality of optical beams at a distance from at least one of the plurality of light emitters that is less than a focal length of the first lens. The first lens converges the plurality of optical beams to a converged optical beam having a beam waist. A second lens is positioned in the optical path of the converged optical beam. The second lens projects the converged optical beam to a target range. The position of the second lens and an emission width of at least one of the plurality of light emitters are configured to provide a desired field-of-view of the LIDAR transmitter at the target range.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: December 24, 2019
    Assignee: OPSYS Tech Ltd.
    Inventor: Mark J. Donovan
  • Die
    Patent number: 10510677
    Abstract: A semiconductor structure includes a wafer comprising a plurality of viewing fields defined thereon, a plurality of dies defined by a scribe line formed in each viewing field, a plurality of mark patterns formed in the scribe line, and a plurality of anchor pattern respectively formed in the review fields, the anchor patterns being different from the mark patterns.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 17, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yung-Teng Tsai, Hung-Chin Lin, Chia-Chen Sun, Chih-Yu Wu, Jun-Ming Chen, Chung-Chih Hung, Sheng-Chieh Chen
  • Patent number: 10499662
    Abstract: A method and system of producing extruded ice cream products includes providing a plurality of extruded ice cream products in an ordered arrangement on a plurality of trays and arranging the plurality of trays for movement along a conveyor line. The plurality of trays and the plurality of extruded ice cream products are arranged thereon for downstream processing. The method and system further includes sensing at least one of a vertical product height or a horizontal product position of the plurality of extruded ice cream products arranged on the plurality of trays using at least one sensor, and analyzing the sensed at least one of the vertical product height or the horizontal product position of the plurality of extruded ice cream products using a processor to determine suitability for downstream processing.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 10, 2019
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventors: Poul Erik Kristensen, Shane McBride
  • Patent number: 10502687
    Abstract: Methods and systems are presented for analysing semiconductor materials as they progress along a production line, using photoluminescence images acquired using line-scanning techniques. The photoluminescence images can be analysed to obtain spatially resolved information on one or more properties of said material, such as lateral charge carrier transport, defects and the presence of cracks. In one preferred embodiment the methods and systems are used to obtain series resistance images of silicon photovoltaic cells without making electrical contact with the sample cell.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: December 10, 2019
    Assignee: BT Imaging Pty Ltd
    Inventors: Thorsten Trupke, Juergen Weber
  • Patent number: 10495441
    Abstract: A probing element for measuring at least one measurement object is provided. The probing element includes at least one first optical sensor configured to generate at least one first sensor signal depending on a fine shape of at least one surface of the measurement object, at least one second sensor configured to generate at least one second sensor signal depending on at least one of a coarse shape of the measurement object, and a distance to the measurement object. The at least one first optical sensor has a first measurement region and the at least one second sensor has a second measurement region. The at least one first optical sensor is at least partly integrated in the at least one second sensor to permit the first measurement region and the second measurement region to at least partly overlap.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 3, 2019
    Assignee: Carl Zeiss Industrielle Messtechnik GmbH
    Inventors: Aksel Goehnermeier, Ferdinand Bader, Dietrich Imkamp
  • Patent number: 10488313
    Abstract: A particle mass concentration in an aerosol volume can be detected by an optical particle sensor. In order to ensure that different degrees of contamination of the optical particle sensor can be detected by the sensor and can be taken into consideration, the optical particle sensor identifies individual particles at low particle concentrations of up to 1000 particle s/cm3.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 26, 2019
    Assignee: PARAGON AG
    Inventor: Ralf Moenkemoeller
  • Patent number: 10488249
    Abstract: Various embodiments of a light detection device and a method of using such device are disclosed. In one or more embodiments, the light detection device can include a housing including a top surface and a bottom surface, where the housing extends along a housing axis between the top surface and the bottom surface; and a support member connected to the housing and adapted to be selectively moved from a closed position to an open position. The support member is further adapted to maintain the light detection device in an upright position when the bottom surface and the support member are in contact with a working surface and the support member is in the open position.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 26, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Fusu Thao, Giuseppe M. Bommarito, Thomas E. Dewey, Jr., Kathleen M. Stenersen, Beth A. Fritcher, Stephen R. Alexander, Phillip A. Bolea, Michele A. Waldner
  • Patent number: 10488517
    Abstract: A method and apparatus for vehicle recognition are provided, which are combined with a radar apparatus scanning a detection area with electromagnetic waves. Data derived from reflection waves are outputted from the radar apparatus to the vehicle recognizing apparatus to detect a vehicle in the detection area. The vehicle recognizing apparatus is provided with a processor performing a process for the recognition on calculation of the received data for the recognition of vehicles. In the process, weak-refection directions providing weak-reflection points on a vehicle are determined which are defined as radiation directions of the electromagnetic waves in which the reflection waves have intensities lower than a threshold. A common reflection point group defined as a group of reflection points belonging to the same vehicle is supplemented with the weak-reflection points for completing the common reflection point group.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 26, 2019
    Assignee: DENSO WAVE INCORPORATED
    Inventor: Yuki Hasegawa
  • Patent number: 10488336
    Abstract: A wearable device, a charger, and a method for estimating absorbance of the wearable device are provided. The wearable device includes a spectroscope configured to emit a first light to a reference material of a charger, measure an intensity of the first light reflected from the reference material, emit a second light to a skin of a user, and measure an intensity of the second light reflected from the skin of the user; and a processor configured to determine absorbance of the skin of the user based on the intensity of the first light and the intensity of the second light.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 26, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sang Kyu Kim
  • Patent number: 10480930
    Abstract: Provided is an optical displacement meter capable of enlarging an output signal region with respect to a region in which a light-receiving amount needs to be measured, a method for adjusting an optical displacement meter, and an optical displacement measuring method. The optical displacement meter includes a light-receiving element in which a maximum value of an output signal is set with respect to a boundary value, which is a maximum value of a region in which the light-receiving amount needs to be measured. The entire region of the output signal of the light-receiving element can be assigned to the valid region, in which the light-receiving amount needs to be measured with an optical displacement meter, and the optical displacement meter can have an enlarged output signal region with respect to the region in which the light-receiving amount needs to be measured.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 19, 2019
    Assignee: MITUTOYO CORPORATION
    Inventors: Kentaro Tamura, Masaoki Yamagata
  • Patent number: 10481074
    Abstract: Systems in a flow cytometer having an interrogation zone and illumination impinging the interrogation zone include: a lens subsystem including a collimating element that collimates light from the interrogation zone, a light dispersion element that disperses collimated light into a light spectrum, and a focusing lens that focuses the light spectrum onto an array of adjacent detection points; a detector array, including semiconductor detector devices, that collectively detects a full spectral range of input light signals, in which each detector device detects a subset spectral range of the full spectral range of light signals; and a user interface that enables a user to create a set of virtual detector channels by grouping detectors in the detector array, such that each virtual detector channel corresponds to a detector group and has a virtual detector channel range including the sum of subset spectral ranges of the detectors in the corresponding detector group.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: November 19, 2019
    Assignee: Becton, Dickinson and Company
    Inventor: Collin A. Rich
  • Patent number: 10475203
    Abstract: Systems and methods are disclosed for measuring the dimensions of storage tanks using Optical Reference Line Method calibration techniques. The system utilizes a camera mounted near the tank wall such that its optical axis defines a reference line extending parallel to the wall and a robotic vehicle for moving a target object along the surface of the tank. Specifically, the target includes a predefined measurement scale that can be imaged by the camera as it is moved along the wall. A computer implementing computer-vision algorithms analyzes images of the scale captured at respective elevations to determine the point on the scale intersected by the reference line and a corresponding offset distance between the wall and the reference line. Accordingly, the dimensions of the tank are calculated by the computer based on the offset distance calculated for respective elevations of the tank wall.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: November 12, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Brian Parrott, Ali Outa, Fadl Abdellatif
  • Patent number: 10473575
    Abstract: The invention relates to a nozzle for flow cytometry, the housing of which is tapering towards an outlet and in which a feed tube is arranged for a core flow liquid, the outlet opening of which is arranged at a distance from the outlet of the housing. The outlet of the housing forms the outlet of the nozzle. The housing of the nozzle extends from its outlet, which is arranged at its first end to its opposite second end, and has an inlet for a sheath flow liquid connected with the internal volume. The nozzle is characterized in that in the housing a leading element that promotes the alignment of particles extends from both sides of the feed tube.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 12, 2019
    Assignee: MASTERRIND GMBH
    Inventor: Detlef Rath