Abstract: A diagnostic system for determining whether a rotor shaft of a compressor is unbalanced. The compressor includes a displacement sensor that measures the displacement of the rotor shaft as it is rotating. The sensor dynamic frequency signal is sent to a bandpass filter that filters out an eigen-frequency frequency that is a function of shaft elasticity and rotor dynamics. The filtered frequency signal is then rectified by a rectifier to make the filtered frequency signal positive. The rectified signal is then passed through a low pass filter that converts the rectified signal to a DC signal. The DC signal is then sent to a controller that determines if the amplitude of the signal is above a predetermined threshold, which indicates a problem with the balance of the compressor.
Type:
Grant
Filed:
May 5, 2014
Date of Patent:
May 3, 2016
Assignee:
GM Global Technology Operations LLC
Inventors:
Oliver Maier, Bernd Peter Elgas, Ulrich Dumke, Peter Willimowski
Abstract: A bonded sheet to be applied to a membrane electrode assembly includes gaskets serving as a first sheet member and an electrolyte membrane serving as a second sheet member stacked on the gaskets. The gaskets each include a first bonded portion where grooves provided in a sheet surface direction at least partly face sheet end portions, and a second bonded portion having no groove. The electrolyte membrane is stacked on the gaskets in the first bonded portion and the second bonded portion.
Abstract: A battery module has at least four battery cells that are cooled via a cooling plate arranged between them. Fins project on the cooling plate and at the same time serve as stops for individual battery cells. As a result, a powerful and very rigid battery module is provided that is of structurally simple construction.
Type:
Grant
Filed:
September 18, 2013
Date of Patent:
May 3, 2016
Assignee:
Dr. Ing. h.c. F. Porsche Aktiengesellschaft
Inventors:
Tim Schmidt, Dietmar Luz, Jeremy Curnow
Abstract: A foldable frame for a battery cell assembly includes a one-piece main body. The main body has a first section, a second section, and a third section. The first section is coupled to each of a second section and a third section with living hinges. The first section is configured to receive a first battery cell. The second section is configured to receive an expansion unit and a second battery cell. The second section folds over the first battery cell. The third section is configured to fold over the second battery cell, thereby securing each of the first battery cell, the expansion unit, and the second battery cell within the foldable frame.
Abstract: A secondary battery includes an electrode assembly including a first electrode plate, a separator, and a second electrode plate; a first collecting plate electrically coupled to the first electrode plate; a second collecting plate electrically coupled to the second electrode plate; a case containing the electrode assembly, the first collecting plate, and the second collecting plate; a first electrode terminal electrically coupled to the first collecting plate; a second electrode terminal electrically coupled to the second collecting plate; a first plate coupled to the first collecting plate and the first electrode plate and configured to seal the case; a second plate coupled to the second collecting plate and the second electrode terminal; and an insulation plate between the first plate and the second plate.
Type:
Grant
Filed:
March 15, 2011
Date of Patent:
April 26, 2016
Assignees:
Samsung SDI Co., Ltd., Robert Bosch GmbH
Abstract: The present invention relates to a ceramic porous substrate, a reinforced composite electrolyte membrane using the same, and a membrane-electrode assembly having the same. The ceramic porous substrate comprises: a porous polymer base; and void structures formed on the surface of the porous polymer base by linking the space of the inorganic nanoparticles using a polymer binder or a silane-based inorganic binder. The ceramic porous substrate has improved mechanical properties compared to the porous polymer substrate alone, and the void structures thereof can be controlled in various ways.
Type:
Grant
Filed:
June 26, 2009
Date of Patent:
April 19, 2016
Assignee:
Korea Research Institute of Chemical Technology
Inventors:
Young Talk Hong, Jong Ho Choi, Kyung Seok Yoon, Sang Young Lee
Abstract: The present invention relates to a method for preparing an anode active material, comprising (S1) forming a shell being a coating layer comprising a carbon material on the surface of a core comprising silicon oxide particles, to obtain a silicon oxide-carbon composite having a core-shell structure; (S2) mixing the silicon oxide-carbon composite with an oxygen-containing lithium salt, followed by heat treatment to produce a silicon oxide-lithium alloy, thereby obtaining a (SiOx—Liy)—C (0<x<1.5, 0<y<4) composite having a core-shell structure; and (S3) washing the surface of the (SiOx—Liy)—C composite having a core-shell structure and drying the composite, and an anode active material prepared by the method.
Type:
Grant
Filed:
February 20, 2014
Date of Patent:
April 19, 2016
Assignee:
LG Chem, Ltd.
Inventors:
Mi-Rim Lee, Yong-Ju Lee, Je-Young Kim, Hye-Ran Jung
Abstract: A rechargeable battery includes an electrode assembly having a first electrode and a second electrode; a case housing the electrode assembly; a cap plate coupled to the case; a short-circuit tab electrically coupled to the second electrode and having an opening; a short-circuit member electrically coupled to the first electrode and configured to be moved by a change in pressure to be electrically coupled to the short-circuit tab; and a cover covering the opening in the short-circuit tab.
Type:
Grant
Filed:
September 23, 2011
Date of Patent:
April 12, 2016
Assignees:
Samsung SDI Co., Ltd., Robert Bosch GmbH
Abstract: A method of joining a substrate for a bipolar electrode of a bipolar battery to a frame for supporting the bipolar electrode for use in the bipolar battery includes the implanting of a thermoplastic material in the substrate. The substrate and the frame are then vibration welded together at a frequency in the range of 50 Hz to 1 kHz to melt the thermoplastic material. The melted thermoplastic material forms a continuous or substantially continuous loop around the substrate to join the substrate and the frame together. A bipolar battery comprising a substrate and a frame joined together by the method, and a substrate for a bipolar electrode for use in the method are also described.
Abstract: Provided are redox flow batteries employing supporting electrolyte of a ring- or spiro-type structure and having high energy efficiencies and energy densities.
Abstract: Battery electrodes are provided that can include a conductive core supported by a polymeric frame. Methods for manufacturing battery electrodes are provided that can include: providing a sheet of conductive material; and framing the sheet of conductive material with a polymeric material. Batteries are provided that can include a plurality of electrodes, with individual ones of the electrodes comprising a conductive core supported by a polymeric frame.
Abstract: A lithium nickel cobalt manganese composite oxide cathode material includes a plurality of secondary particles. Each secondary particle consists of aggregates of fine primary particles. Each secondary particle includes lithium nickel cobalt manganese composite oxide, which is expressed as LiaNi1-b-cCobMncO2. An average formula of each secondary particle satisfies one condition of 0.9?a?1.2, 0.08?b?0.34, 0.1?c?0.4, and 0.18?b+c?0.67. The lithium nickel cobalt manganese composite oxide has a structure with different chemical compositions of primary particles from the surface toward core of each of the secondary particles. The primary particle with rich Mn content near the surface and the primary particle with rich Ni content in the core of the secondary particle of the lithium nickel cobalt manganese composite oxide cathode material have provided the advantages of high safety and high capacity.
Abstract: A lithium-ion battery includes a case, an electrolyte, a positive electrode, a negative electrode, and an auxiliary electrode. The positive electrode includes a current collector and an active material. The negative electrode includes a current collector and an active material. The auxiliary electrode includes an active material. The electrolyte, positive electrode, and negative electrode are disposed within the case. The auxiliary electrode is configured to selectively couple to the negative electrode to irreversibly absorb lithium from the negative electrode.
Abstract: This invention provides batteries with improved calendar and cycle lifetimes. A rechargeable battery comprises an additional electrode that includes active ions, such as lithium ions. Cell capacity of the battery can be increased by supplying these active ions to the anode or the cathode. In some variations, this invention provides a lithium-ion battery comprising an anode, a cathode, an electrolyte, and an additional lithium-containing electrode, wherein the additional lithium-containing electrode is capable of supplying lithium ions to the anode or the cathode in the presence of an electrical current.
Abstract: Embodiments disclosed include automatically determining alarm threshold settings for monitored battery cells in battery systems. Battery monitoring control units are provided that are configured to initiate battery performance tests (e.g., ohmic tests) on battery cells in a battery system. Failing battery cells are identified as those battery cells having battery performance characteristics outside defined battery performance threshold settings. An initial performance alarm threshold setting is established for each battery cell because of unique performance characteristics that can substantially change during initial charging cycles before the battery cells have settled. A settled performance alarm threshold setting specific to each battery cell is then established based on battery cell performance during the defined settling time period.
Type:
Grant
Filed:
February 28, 2013
Date of Patent:
March 1, 2016
Assignee:
NDSL, Inc.
Inventors:
David Brown, David Robert Battle, Christopher James Belcher, Duncan Joseph Brown, George Feller
Abstract: An example fuel cell assembly may include a shaped fuel source that is formed into a desired shape. The shaped fuel source may have an outer surface, and a fuel cell may be mounted directly on the outer surface of the shaped fuel source. In some instances, the fuel cell assembly may also include one or more of a cathode cap, an anode cap, a refill port, and an outer shell disposed around an exterior of the fuel cell assembly, but these are not required.
Abstract: Conventional fuel cell systems had the problem of impurity gases flowing back from a buffer tank and a reduction in the voltages of unit cells when the supply pressure of an anode gas is caused to pulsate at startup. An operating method include setting any one of the amplitude and cycle of the pulsation of the supply pressure of the anode gas to a fuel cell stack (FS) in accordance with the permeability of a nitrogen gas from a cathode side to an anode side. The method makes it possible to suppress unnecessary pulsation of the supply pressure of the anode gas at startup, and thus to maintain the concentration of a hydrogen gas in the fuel cell stack (FS) at an optimum level while preventing degradation in the mechanical strength of a membrane electrode structure that constitutes each unit cell (FC) of the fuel cell stack (FS).
Type:
Grant
Filed:
September 27, 2011
Date of Patent:
February 23, 2016
Assignee:
NISSAN MOTOR CO., LTD.
Inventors:
Hidetaka Nishimura, Keigo Ikezoe, Masashi Sato
Abstract: A secondary battery including a circuit board unnecessitating a cut-out portion is provided. The secondary battery includes a battery cell having a cell tab, a protective circuit module electrically connected to the cell tab and having a circuit pattern formed therein, and a connection tab attached to the protective circuit module and electrically connected to the circuit pattern, wherein the connection tab includes a conductive layer adhered to the protective circuit module and including a first plating layer formed on the conductive layer and a second plating layer formed on the first plating layer, and the cell tab is welded to the connection tab.
Abstract: A negative electrode for a lithium ion secondary battery including an active material layer that is disposed on a current collector and that contains a negative electrode active material and a binder, in which the negative electrode active material includes an alloy active material and a carbon active material, and the weight ratio between the alloy active material and the carbon active material in the active material layer is 20:80 to 50:50, and the binder contains 0.1 to 15 wt % of an ethylenically unsaturated carboxylic acid monomer polymerization unit.
Abstract: The present invention provides a method for providing electrical potential from a solid-state sodium-based secondary cell (or rechargeable battery). A secondary cell is provided that includes a solid sodium metal negative electrode that is disposed in a non-aqueous negative electrolyte solution that includes an ionic liquid. Additionally, the cell comprises a positive electrode that is disposed in a positive electrolyte solution. In order to separate the negative electrode and the negative electrolyte solution from the positive electrolyte solution, the cell includes a sodium ion conductive electrolyte membrane. The cell is maintained and operated at a temperature below the melting point of the negative electrode and is connected to an external circuit.
Type:
Grant
Filed:
August 27, 2014
Date of Patent:
February 16, 2016
Assignee:
CERAMATEC, INC.
Inventors:
Chett Boxley, W Grover Coors, John Joseph Watkins