Patents Examined by Janelle Morillo
  • Patent number: 10697047
    Abstract: An aluminum alloy extruded material in relation with the present invention is with high strength by die quench air cooling and excellent in SCC resistance. The aluminum alloy extruded material is an Al—Zn—Mg-based aluminum alloy extruded material for structural member for automobiles such as a bumper reinforce, a door guard bar and the like which satisfies three expressions of 5.0?[Zn]?7.0, [Zn]/5.38<[Mg]?[Zn]/5.38+0.7, and [Zn]+4.7[Mg]?14, where [Mg] represents mass % of Mg and [Zn] represents mass % of Zn, and contains at least either one element of Cu: 0.1-0.6 mass % and Ag: 0.01-0.15 mass %, Ti: 0.005-0.05 mass %, and at least one element out of Mn: 0.1-0.3 mass %, Cr: 0.05-0.2 mass %, Zr: 0.05-0.2 mass %.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 30, 2020
    Assignee: KOBE STEEL, LTD.
    Inventors: Yukimasa Miyata, Shinji Yoshihara
  • Patent number: 10646914
    Abstract: Aluminum alloys described herein include silicon, iron, copper, manganese, magnesium, and chromium. In various implementations, the aluminum alloys also include one or more of zinc and titanium. Typically, a total amount of iron and manganese in the aluminum alloys is no less than 0.28% by weight and no greater than 0.45% by weight, and the grains in the aluminum alloys have an average grain length of no greater than 6 mm. Aluminum alloy billets can be forged for wheel production at selected temperatures.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 12, 2020
    Assignee: ACCURIDE CORPORATION
    Inventor: Nicholas E. Nanninga
  • Patent number: 10590518
    Abstract: A high strength cast aluminium alloy for high pressure die casting comprising magnesium silicide 6 to 12 wt. %, magnesium 4 to 10 wt. %, X element from copper (Cu), zinc (Zn), silver (Ag), gold (Au) and Lithium (Li) at 3 to 10 wt. %, manganese 0.1 to 1.2 wt. %, iron max. 1.5 wt. %, titanium or the other grain refining elements from Cr, Nb, and Sc with 0.02 to 0.4 wt. %, and impurity and minor alloying elements at a level of maximum 0.3 wt. % and totally <0.5% of at least one element selected from scandium (Sc), zirconium (Zr), Nickel (Ni), chromium (Cr), niobium (Nb), gadolinium (Gd), calcium (Ca), yttrium (Y), antinomy (Sb), bismuth (Bi), neodymium (Nd), ytterbium (Yb), vanadium (V), chromium (Cr), beryllium (Be) and boron (B) and the remainder aluminium.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: March 17, 2020
    Assignee: BRUNEL UNIVERSITY LONDON
    Inventors: Shouxun Ji, Zhongyun Fan, Feng Yan
  • Patent number: 10266921
    Abstract: Systems and methods for continuously casting Al—Mg alloy sheet or plate product having a high amount of magnesium are disclosed. The Al—Mg products have 4 or 6 to 8 or 10 wt. % Mg and are resistant to both stress corrosion cracking and intergranular corrosion.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 23, 2019
    Assignee: Arconic Inc.
    Inventors: Ali Unal, David A. Tomes, Jr., Gavin Wyatt-Mair, David Timmons
  • Patent number: 10253403
    Abstract: Provided is a method of manufacturing a grain-refined aluminum-zinc-magnesium-copper alloy sheet, including manufacturing an aluminum alloy sheet from an aluminum-zinc-magnesium-copper alloy melt by twin-roll strip casting, primarily rolling the aluminum alloy sheet manufactured in step 1, cold rolling the aluminum alloy sheet manufactured in step 2, and performing a heat treatment on the aluminum alloy sheet manufactured in step 3, thereby reducing processing time and cost by using twin-roll casting. Since grain refinement and homogenization of the sheet manufactured by the twin-roll casting are maximized by sequentially performing warm rolling, cold rolling, and a heat treatment on the sheet, elongation may be improved.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 9, 2019
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Hyoung-Wook Kim, Yun-Soo Lee, Cha Yong Lim, Jae Hyung Cho
  • Patent number: 10202670
    Abstract: The present disclosure provides an aluminum (Al) alloy for continuous casting, and a method of making the same. The Al alloy includes Al, Si in the range of 14 to 20 wt %, Ti in the range of 2 to 7 wt % and B in the range of 1 to 3 wt %. According to the disclosure, TiB2 compound may be formed in the alloy, where the ratio of Ti:B may range from 2 to 2.5 wt %. By a process of continuously casting the molten metal, an aluminum alloy with improved elasticity may be produced.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: February 12, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hoon Mo Park, Hyuk Kang
  • Patent number: 10190200
    Abstract: The present invention relates to extruded, rolled and/or forged products. Also provided are methods of making such products based on aluminum alloy wherein a liquid metal bath is prepared comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element selected, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities. The products and methods of the present invention offer an advantageous compromise between static mechanical strength and damage tolerance and are useful in aeronautical design.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: January 29, 2019
    Assignee: CONSTELLIUM ISSOIRE
    Inventors: Fabrice Heymes, Frank Eberl, Gaelle Pouget
  • Patent number: 10190535
    Abstract: Disclosed is an aluminum alloy having superior elasticity and wear resistance. The aluminum alloy has superior elasticity and wear resistance and improved wear properties by including additional reinforcing phase formation such as Al3Ni phase formation. In particular, the reinforcing phase may be generated by adding nickel (Ni) that may reinforce and enhance properties which may be decreased due to generation of a ternary phase such as TiAlSi. The aluminum alloy comprises an amount of about 13 to 21% by weight of the silicon (Si), an amount of about 1 to 5% by weight of the nickel (Ni), an amount of about 4 to 5% by weight of the titanium (Ti), an amount of about 0.7 to 1% by weight of boron (B), and a remainder of Al based on a total weight of the aluminum alloy.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 29, 2019
    Assignee: Hyundai Motor Company
    Inventors: Tae-Gyu Lee, Jae-Hwang Kim, Hoon-Mo Park
  • Patent number: 10107112
    Abstract: The invention relates to a method for producing a component from a TiAl alloy, wherein the component is shaped by forging, in particular isothermal forging, and is subsequently subjected to at least one heat treatment, wherein in the first heat treatment the temperature is between 1100 and 1200° C. and is maintained for 6 to 10 hours and then the component is cooled.
    Type: Grant
    Filed: January 19, 2013
    Date of Patent: October 23, 2018
    Assignee: MTU AERO ENGINES AG
    Inventor: Wilfried Smarsly
  • Patent number: 10060012
    Abstract: The present invention relates to a TiAl alloy for use at high temperatures having the main constituents titanium and aluminum and having a proportion of aluminum of greater than or equal to 30 at. % and a matrix composed of ? phase and precipitates of ? phase embedded in the matrix, with the ? phase and the ? phase together making up at least 55% by volume of the microstructure, and also a process for the production thereof and the use thereof.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 28, 2018
    Assignee: MTU AERO ENGINES AG
    Inventor: Martin Schloffer
  • Patent number: 10053754
    Abstract: High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: August 21, 2018
    Assignee: Arconic Inc.
    Inventors: Dustin M. Bush, Edward L. Colvin, Roberto J. Rioja, Ralph R. Sawtell
  • Patent number: 10030293
    Abstract: An aluminum material for producing light-weight components includes aluminum (Al), scandium (Sc), zirconium (Zr) and ytterbium (Yb), where a weight ratio of scandium (Sc) to zirconium (Zr) to ytterbium (Yb) [Sc/Zr/Yb] is in a range from 10/5/2.5 to 10/2.5/1.25.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: July 24, 2018
    Assignee: Airbus Defence and Space GmbH
    Inventor: Frank Palm
  • Patent number: 10022773
    Abstract: In some embodiments of present disclosure, a method includes: obtaining an aluminum sheet comprising a 3xxx or a 5xxx alloy having a tensile yield strength as measured in the longitudinal direction of 27-33 ksi and an ultimate tensile strength; wherein the ultimate tensile strength minus the tensile yield strength is less than 3.30 ksi (UTS-TYS<3.30 ksi); and forming a container having a dome from the aluminum sheet.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: July 17, 2018
    Assignee: Alcoa USA Corp.
    Inventors: Thomas N. Rouns, David J. McNeish, Jean F. Capps, Christopher R. Miller
  • Patent number: 10000828
    Abstract: An aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance may include in weight percent, about 0.01% or less copper; about 0.15% or less iron; about 0.60 to about 0.90% manganese, where manganese and iron are present in the alloy in a Mn:Fe ratio of at least about 6.6; about 0.02% or less nickel; about 0.08 to about 0.30% silicon; about 0.10 to about 0.20% titanium; and about 0.05 to about 0.20% zinc; the balance being aluminum and unavoidable impurities. Extruded articles and other articles may be formed using the alloy. Methods of forming such articles may include homogenizing a billet of the alloy prior to forming the article.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: June 19, 2018
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Nicholas Charles Parson, Raynald Guay, Alexandre Maltais
  • Patent number: 9993865
    Abstract: An aluminum alloy product for manufacturing structural components, made from direct chill casting ingots comprises, based on wt %: Zn 7.5˜8.7, Mg 1.1˜2.3, Cu 0.5˜1.9, Zr 0.03˜0.20, the balance being Al, incidental elements and impurities. The levels of Zn, Mg, Cu, and Zr in the aluminum alloy products satisfy the expressions of (a) 10.5?Zn+Mg+Cu?11.0; (b) 5.3?(Zn/Mg)+Cu?6.0; and (c) (0.24?D/4800)?Zr?(0.24?D/5000). D is the minimum length of a line section connecting any two points on the periphery of the cross section of the ingot and passing through the geometrical center of the cross section. 250 mm?D?1000 mm. The aluminum alloy products have a superior combination of strength and damage tolerance, and exhibit homogeneous and consistent performance on the surface, at various depths under the surface, and in the core of the product. A method of producing the aluminum alloy products is also provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: June 12, 2018
    Assignee: GRIMAT Engineering Institute Co., Ltd.
    Inventors: Baiqing Xiong, Yongan Zhang, Baohong Zhu, Xiwu Li, Zhihui Li, Feng Wang, Hongwei Liu
  • Patent number: 9982328
    Abstract: The subject of the invention is a cast part with high static mechanical strength, and for fatigue and hot creep, made of aluminum alloy of composition: Si: 3-11%, preferably 5.0-9.0% Fe<0.50%, preferably <0.30%, preferably still <0.19% or even 0.12% Cu: 2.0-5.0%, preferably 2.5-4.2%, preferably still 3.0-4.0% Mn: 0.05-0.50%, preferably 0.08-0.20% Mg: 0.10-0.25%, preferably 0.10-0.20% Zn: <0.30%, preferably <0.10% Ni: <0.30%, preferably <0.10% V: 0.05-0.19%, preferably 0.08-0.19%, preferably still 0.10-0.19% Zr: 0.05-0.25%, preferably 0.08-0.20% Ti: 0.01-0.25%, preferably 0.05-0.20% other elements <0.05% each and 0.15% in total, the rest aluminum. It more particularly relates to cylinder heads for supercharged diesel or petrol internal combustion engines.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 29, 2018
    Assignee: Rio Tinto Alcan International Limited
    Inventor: Michel Garat
  • Patent number: 9963770
    Abstract: A cast alloy includes aluminum and from about 5 to about 30 weight percent of at least one material selected from the group consisting of cerium, lanthanum, and mischmetal. The cast alloy has a strengthening Al11X3 intermetallic phase in an amount in the range of from about 5 to about 30 weight percent, wherein X is at least one of cerium, lanthanum, and mischmetal. The Al11X3 intermetallic phase has a microstructure that includes at least one of lath features and rod morphological features. The morphological features have an average thickness of no more than 700 um and an average spacing of no more than 10 um, the microstructure further comprising an eutectic microconstituent that comprises more than about 10 volume percent of the microstructure.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: May 8, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Orlando Rios, Alexander H. King, Scott K. McCall, Michael A. McGuire, Zachary C. Sims, Cori Thorne, David Weiss, Gerard M. Ludtka
  • Patent number: 9957591
    Abstract: An aluminum alloy and a vehicle part manufactured from the aluminum alloy are provided. The aluminum alloy includes about 8.5 to 11.0 wt % of Mg, about 3.5 to 5.8 wt % of Si, about 2.0 to 3.0 wt % of Cu and the balance of Al.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: May 1, 2018
    Assignee: Hyundai Motor Company
    Inventor: Hee Sam Kang
  • Patent number: 9920401
    Abstract: The present invention relates to an aluminum base alloy with high thermal conductivity, and more particularly, to an alloy for die casting that does not become brittle and has high thermal conductivity, so as to be easily used for LED lighting parts, and contains 0.2 to 2.0 wt % of Mg, 0.1 to 0.3 wt % of Fe, 0.1 to 1.0 wt % of Co, with the remainder being Al.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 20, 2018
    Assignee: SANGMOON
    Inventors: Ho Sung Seo, Gi Dong Kang
  • Patent number: 9896747
    Abstract: The present invention relates to an aluminum alloy having low density and enhanced heat resistance. An aluminum alloy having improved high temperature physical properties comprises: magnesium (Mg) in an amount of about 7 to about 11 wt %, silicon (Si) in an amount of about 4 to about 8 wt %, copper (Cu) in an amount of about 0.5 to about 2 wt % and manganese (Mn) in an amount of about 0.3 to about 0.7 wt %, and a balance of aluminum based on the total weight of the aluminum alloy. Vehicle parts such as a piston, a housing and/or a bed plate of high power engine, to which the aluminum alloy may be applied, are provided as well.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 20, 2018
    Assignee: Hyundai Motor Company
    Inventor: Hee-Sam Kang