Patents Examined by Jason M. Greene
  • Patent number: 11325064
    Abstract: Device to dry a damp compressed gas, whereby the device (2) is provided with a dryer that is provided with a liquid desiccant and configured to bring compressed gas in contact with the aforementioned desiccant that is capable of absorbing moisture from the compressed gas, characterised in that the dryer is a membrane dryer (11); the device (2) to dry compressed gas contains a circuit (20) in which the aforementioned liquid desiccant is placed and means to allow the circulation of the desiccant in the circuit (20), consecutively through the membrane dryer (11) with a membrane (13) that forms a partition between the compressed, gas on one side and the liquid desiccant on the other side of the membrane (13), whereby the membrane (13) is impermeable or virtually impermeable to the gas in the compressed gas but selectively permeable to the moisture in the compressed gas; a heat exchanger (29} to heat up the liquid desiccant; a regenerator (22) used to remove at least partially the moisture absorbed in the liquid d
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: May 10, 2022
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventor: Bart Geerts
  • Patent number: 11325065
    Abstract: A process for recovering sulfur and carbon dioxide from a sour gas stream, the process comprising the steps of: providing a sour gas stream to a membrane separation unit, the sour gas stream comprising hydrogen sulfide and carbon dioxide; separating the hydrogen sulfide from the carbon dioxide in the membrane separation unit to obtain a retentate stream and a first permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur; introducing the permeate stream to an amine absorption unit; and processing the permeate stream in the amine absorption unit to produce an enriched carbon dioxide stream.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 10, 2022
    Assignees: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Milind M. Vaidya, Sebastien A. Duval, Feras Hamad, Richard Baker, Tim Merkel, Kaaeid Lokhandwala, Ahmad A. Bahamdan, Faisal D. Al-Otaibi
  • Patent number: 11325066
    Abstract: Recovering helium from a gaseous stream includes contacting an acid gas removal membrane with a gaseous stream to yield a permeate stream and a residual stream, removing a majority of the acid gas from the residual stream to yield a first acid gas stream and a helium depleted clean gas stream, removing a majority of the acid gas from the permeate stream to yield a second acid gas stream and a helium rich stream, and removing helium from the helium rich stream to yield a helium product stream and a helium depleted stream. A helium removal system for removing helium from a gaseous stream including hydrocarbon gas, acid gas, and helium includes a first processing zone including a first acid gas removal unit, a second processing zone including a second acid gas removal unit, a third processing zone, and a helium purification unit.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 10, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Feras Hamad, Megat A. Rithauddeen, Taib Abang, Milind Vaidya, Sebastien A. Duval
  • Patent number: 11318423
    Abstract: This invention discloses a method for separation of an aromatic compound from a mixture comprising an alkane using an improved thin-film composite membrane. The membrane is particularly useful for separation of benzene from cyclohexane, which have similar boiling points. The membrane comprises a more mechanically durable and defect-free separation layer as a result of its fabrication from an ionomer solution that is substantially free of dissolved ionic species not associated with the ionomer.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: May 3, 2022
    Assignee: Compact Membrane Systems Inc.
    Inventors: Sudipto Majumdar, Ning Shangguan, Robert Daniel Lousenberg, Kenneth Evan Loprete
  • Patent number: 11318411
    Abstract: An approach for separating a gaseous mixture includes a multi-stage membrane system in which a rubbery membrane is operated at a low temperature. Various streams are cooled and heated in a multi-fluid heat exchanger. In specific configurations, the multi-fluid heat exchanger is cooled by using no fluids other than fluids derived from the permeate and/or residue generated in the first membrane stage.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: May 3, 2022
    Assignee: Air Liquide Advanced Technologies U.S. LLC
    Inventors: Paul Terrien, Alex Augustine, Kevin Weatherford, Yong Ding
  • Patent number: 11311837
    Abstract: A method of separating gas and a method of making a gas separation membrane. The method of separating gas includes flowing a gas stream through a membrane, in which the membrane comprises a crosslinked mixture of a poly(ether-b-amide) copolymer and an acrylate-terminated poly(ethylene glycol) according to formula (I) or formula (II); and separating the gas stream via the membrane. In formulas (I) and (II), each n is of from 2 to 30; and each R is independently —H or —CH3.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 26, 2022
    Assignee: Saudi Arabian Oil Company
    Inventor: Junyan Yang
  • Patent number: 11305240
    Abstract: A zeolite membrane complex includes a support and a zeolite membrane formed on the support. The zeolite membrane is of an SAT-type zeolite. Among particles on the surface of the zeolite membrane, particles that have aspect ratios higher than or equal to 1.2 and lower than or equal to 10 account for 85% or more of the area of the surface of the zeolite membrane. This improves the orientations of the particles and also reduces the interstices among the particles. As a result, the denseness of the zeolite membrane is improved. Accordingly, for example, high gas separation performance can be obtained when the zeolite membrane complex is used as a gas separation membrane.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: April 19, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenichi Noda, Aya Miura, Ryotaro Yoshimura
  • Patent number: 11298651
    Abstract: The invention relates to a gas-liquid separator (2) for separating at least one liquid component, in particular H2O, from a gaseous component, in particular H2, the separator comprising at least one collecting tank (12) which is supplied with a medium, at least the liquid component of the medium being separated into the collecting tank (12), and the separated portion of the medium being discharged from the collecting tank (12) via a discharge valve (46). According to the invention, the gas-liquid separator (2) is integrated into a housing (11) of a recirculation pump (9).
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: April 12, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Michael Kurz
  • Patent number: 11285445
    Abstract: Embodiments of the present disclosure describe a copolymer composition comprising a polyether-based copolymer, wherein the copolymer dissolves in one or more of an alcohol and alcohol-water mixture. Embodiments of the present disclosure describe a thin-film composite membrane comprising a porous support and a selective layer comprising a polyether-based copolymer, wherein the polyether-based copolymer dissolves in one or more of an alcohol and alcohol-water mixture. Embodiments of the present disclosure describe a method of capturing one or more chemical species comprising contacting a thin-film composite membrane with a fluid composition, wherein the fluid composition includes at least CO2 and capturing CO2 from the fluid composition. Embodiments of the present disclosure also describe methods of synthesizing copolymer compositions and methods of fabricating composite membranes.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 29, 2022
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Madhavan Karunakaran, Mahendra Kumar, Rahul Shevate, Faheem Hassan Akhtar, Klaus-Viktor Peinemann
  • Patent number: 11278848
    Abstract: A separation membrane structure has partition walls including a honeycomb shaped porous ceramic body provided with a large number of pores, and cells to become through channels of a fluid are formed by the partition walls. The cells include separation cells and slit cells. In the separation cells, the intermediate layer is disposed on the surface of a substrate, and a separation layer is further formed. The intermediate layer has a structure where aggregate particles are bonded to one another by an inorganic bonding material having a thermal expansion coefficient equal to or higher than that of the aggregate particles.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: March 22, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Makoto Miyahara, Tetsuya Uchikawa, Makoto Teranishi, Makiko Ichikawa, Hideyuki Suzuki
  • Patent number: 11278339
    Abstract: A fluid management system for use with an ultrasound probe assembly can include first and second conduits each configured to extend from and be fluidly connected to the ultrasound probe assembly. A fluid directing system can include a circulation pump fluidly connected to both the first and second conduits. A fluid degassing system can be fluidly connected to the first and second conduits. The fluid degassing system can be configured to remove at least some gas from the fluid in the ultrasound probe assembly. A temperature control system can be fluidly connected to the first and second conduits. The temperature control system can be configured to control the temperature of the fluid in the ultrasound probe assembly. A volume adjustment system can be fluidly connected to the first and second conduits. The volume adjustment system can be configured to adjust the volume of the fluid in the ultrasound probe assembly.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: March 22, 2022
    Assignee: SONABLATE CORP.
    Inventors: Ralf Seip, Rodrigo Chaluisan, Laura Court, Mark Carol
  • Patent number: 11278849
    Abstract: A molecular sieve that has high selectivity and enables high-speed molecular permeation is provided. The molecular sieve has a nanowindow formed lacking a portion of carbon atoms in graphene, and one or more heteroatoms substituting for one or more carbon atoms that constitute a rim of this nanowindow, in which an electrostatic field is induced within the nanowindow by the heteroatoms, the rim of the nanowindow is relaxed in cooperation with a permeating molecule having a van der Waals' radius larger than the nanowindow, and the molecular sieve becomes permeable to the permeating molecule.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: March 22, 2022
    Assignees: SHINSHU UNIVERSITY, KOTOBUKI HOLDINGS CO., LTD.
    Inventors: Katsumi Kaneko, Fernando Vallejos-Burgos, Toshio Takagi, Katsuyuki Murata
  • Patent number: 11278843
    Abstract: A process for purifying a feed gas including methane and heavy hydrocarbons, including: step a): cooling the feed gas in a heat exchanger; step b): introducing the resulting into a first phase separator to produce a liquid stream depleted in methane and enriched in heavy hydrocarbons and a gas stream; step c): separating the gas stream in a membrane from which a methane-enriched permeate stream and a partially condensed residue stream exit; step d): introducing the residue stream from step c) into a second phase separator vessel in order to produce a liquid stream and a gas stream; step e): introducing at least one portion of the gas stream resulting from step d) into a JT expansion means; and step f): heating at least one portion of the expanded stream in the heat exchanger used in step a) counter-current to the feed stream in order to cool the latter.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: March 22, 2022
    Assignees: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude, Air Liquide Advanced Technologies U.S. LLC
    Inventors: Paul Terrien, Pascal Marty, Yong Ding
  • Patent number: 11278846
    Abstract: Provided is a method for preparing a defect-free DDR molecular sieve membrane. Sigma-1 molecular sieve is used as an inducing seed crystal to prepare and obtain a continuous and compact DDR molecular sieve membrane on the surface of a porous ceramic support. An ozone atmosphere or an external field assisted technology is used to remove a template in the pores of the molecular sieve membrane at a low temperature. The invention avoids the formation of intercrystal defects and cracks, an activated DDR molecular sieve membrane has a good selectivity for separating CO2, and the membrane preparation time is significantly reduced.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 22, 2022
    Assignee: Nanjing University of Technology
    Inventors: Xuehong Gu, Lin Wang, Chun Zhang
  • Patent number: 11272674
    Abstract: A flow control system for an irrigation sprinkler can include a service valve having an inlet, a first fluid port, a second fluid port, a third fluid port, and/or a valve piston having a valve piston inlet and a valve piston outlet. The system can include a pilot valve and a vent line. The system can include a filter in fluid communication with the inlet of the service valve. The valve piston can be configured to move vertically with respect to the first, second, and third fluid ports between first, second, and third valve positions.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: March 15, 2022
    Assignee: Hunter Industries, Inc.
    Inventors: Ronald H. Anuskiewicz, David W. Davidson, Michael A. Huelsman
  • Patent number: 11273388
    Abstract: The present invention discloses an integrated new technique and apparatus for recycling volatile organic compounds of coating printing. The new technique collects a mixed gas of volatile organic compounds produced in the process of coating and drying of a coating machine with a volatiles collecting hood of coating machine, compresses and lead the mixed gas of volatile organic compounds into a condensation system for condensation; the obtained condensate enters a gas-liquid separator to obtain a coating solvent with high concentration; non-condensable lean gas enters a membrane separation and enrichment system to obtain a mixed gas of high concentration organic compounds after membrane separation and enrichment with a complete set of membrane assembly, and then returns to front of the condensation system to repeat the integrated technique.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: March 15, 2022
    Assignee: JIANGSU JIUMO HIGH-TECH CO., LTD.
    Inventors: Wanqin Jin, Mingming Cao, Xiaobin Ding, Weihong Xing
  • Patent number: 11266954
    Abstract: Embodiments relate generally to a filter (110), for example, for attachment onto a gas detector device or a gas sensor, and attempt to improve the efficiency and service life of the filter (110). Embodiments typically comprise a dustproof membrane (114) and a waterproof membrane (113). Some embodiments may also comprise a splash-proof cap (130) and/or features to reduce negative pressure on the filter (110).
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: March 8, 2022
    Assignee: Honeywell International Inc.
    Inventors: Qidao Lin, Feng Liang, Yong Tang
  • Patent number: 11266941
    Abstract: Surface modified filter media, including surface modified filter media having enhanced performance characteristics, are provided. In some embodiments, a filter media may comprise two or more layers designed to enhance fluid separation efficiency. One or more of the layers may have at least a portion of a surface that is modified to alter and/or enhance the wettability of the surface with respect to a particular fluid. In certain embodiments involving a filter media including more than one surface modified layer, at least one surface modified layer may have a greater air permeability and/or mean flow pore size than that of another surface modified layer. Such a configuration of layers may result in the media having enhanced fluid separation properties compared to filter media that do not include such modified layers or configuration of layers, all other factors being equal. The filter media may be well-suited for a variety of applications, including filtering fuel, air, and lube oil.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: March 8, 2022
    Assignee: Hollingsworth & Vose Company
    Inventors: Sneha Swaminathan, Howard Yu, Siqiang Zhu
  • Patent number: 11253813
    Abstract: A method for manufacturing a diaphragm support member with a diaphragm support made of a sintered metal having a diaphragm layer, comprising at least the following steps: a. providing a laminar or tubular diaphragm support made of a porous sintered metal with a surface that is provided for the purpose of being coated with the diaphragm layer; b. providing a metallic connecting element for connecting the diaphragm support to a gas-carrying line; c. connecting the diaphragm support and connecting element with a weld seam to the diaphragm support member and forming a first connection zone between the weld seam and diaphragm support and a second connection zone between the weld seam and the connecting element; d. arranging a metal layer on the surface and the weld seam so that the metal layer covers at least the first connection zone; d. cohesively joining the metal layer at least with the surface and the weld seam; and e.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 22, 2022
    Assignee: GKN Sinter Metals Engineering GmbH
    Inventors: Harald Balzer, Enrico Mählig, Nicola De Cristofaro
  • Patent number: 11247169
    Abstract: A biogas combustion system that obtains a stable output and saves energy is realized. A combustion system comprises a separation portion 14 that removes carbon dioxide from a treatment target gas containing a mixture gas containing methane as a main component and containing carbon dioxide to obtain methane gas of a high purity in which at least a content of carbon dioxide has been reduced, and a combustion portion 15 that combusts the methane gas. The separation portion 14 includes a first treatment chamber 11 and a second treatment chamber 12 separated from each other by a separation membrane 13 therebetween.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 15, 2022
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Hideaki Matsuo