Patents Examined by Jennifer Dunston
  • Patent number: 11098094
    Abstract: The present invention relates to proteins consisting of an artificial DNA-binding domain (DBD) and related molecules and uses thereof. In particular, the proteins are ZF-DBD or TALE-DBD and are used for the treatment of eye disorders caused by gain of function mutation. The disorder may be ADRP, in particular ADRP caused by mutation in the rhodopsin gene. The present invention also relates to a method to identify cis-regulatory elements and to modulate them via DBDs.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: August 24, 2021
    Assignee: FONDAZIONE TELETHON
    Inventors: Salvatore Botta, Enrico Maria Surace, Elena Marrocco
  • Patent number: 11085041
    Abstract: A method of preparing a library of tagged nucleic acid fragments including contacting a population of cells directly with a lysis reagent having one or more protease to generate a cell lysate; inactivating the protease to generate an inactivated cell lysate, and applying a transposase and a transposon end composition containing a transferred strand to the inactivated cell lysate under conditions wherein the target nucleic acid and the transposon end composition undergo a transposition reaction.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 10, 2021
    Assignee: Illumina, Inc.
    Inventors: Fiona Kaper, Gordon Cann
  • Patent number: 11072782
    Abstract: Herein described is a construct for epigenomic modification of genes composed of: (a) a Krüppel-associated box zinc finger protein or homologous, (b) a DNA region capable of binding to the target gene or homologous, (c) a human DNA methyltransferase DNMT3A or homologous and (d) a murine DNA methyltransferase Dnmt3L or homologous, wherein components a), b), c) and d) are linked to each other either directly or via at least one linker. The construct is a designer epigenome modifier that can be used to silence genes coding for a protein in leukocytes that avoids the internalization of HI viruses in immune cells.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: July 27, 2021
    Assignee: Albert-Ludwigs-Universitaet Freiburg
    Inventors: Toni Cathomen, Claudio Mussolino, Tatjana I. Cornu, Tafadzwa Mlambo, Sandra Nitsch, Jamal Alzubi, Marianna Romito
  • Patent number: 11066663
    Abstract: The present disclosure relates to methods of joining three or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro or in vivo. The method allows the joining of a large number of DNA fragments, in a deterministic fashion. It can be used to rapidly generate nucleic acid libraries that can be subsequently used in a variety of applications that include, for example, genome editing and pathway assembly. Kits for performing the method are also disclosed.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: July 20, 2021
    Assignee: Zymergen Inc.
    Inventors: Erik Jedediah Dean, Kedar Patel, Aaron Miller, Kunal Mehta, Philip Weyman
  • Patent number: 11053484
    Abstract: The present invention provides a genetically-modified T cell comprising in its genome a modified human T cell receptor alpha gene. The modified T cell receptor alpha gene comprises an exogenous sequence of interest inserted into an intron within the T cell receptor alpha gene that is positioned 5? upstream of TRAC exon 1. The exogenous sequence of interest can comprise an exogenous splice acceptor site and/or a poly A signal, which disrupts expression of the T cell receptor alpha subunit. The sequence of interest can also include a coding sequence for a polypeptide, such as a chimeric antigen receptor. Additionally, the endogenous splice donor site and the endogenous splice acceptor site flanking the intron are unmodified and/or remain functional. The invention further provides compositions and methods for producing the genetically-modified cell, and populations of the cell, and methods for the treatment of a disease, such as cancer, using such cells.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 6, 2021
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Clayton Beard
  • Patent number: 11046952
    Abstract: Embodiments disclosed herein are directed to a new genetic perturbation and screening method that combines advantages of pooled perturbation with imaging assays for complex phenotypes. Specifically, the method may be used to screen pooled genomic perturbations to identify phenotypes and to identify perturbed genes at the single-cell level using optical barcodes. A major advantage offered by this approach is the ability to screen for any cellular phenotype that can be identified by high-resolution microscopy—including live-cell phenotypes, protein localization, or highly multiplexed expression profile and mRNA localization by RNA-FISH—in conjunction with a large array of genetic perturbations applied as a pool in a single test volume.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 29, 2021
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Paul Blainey, David Feldman
  • Patent number: 11021762
    Abstract: The current invention relates to nucleic acid impurities in a composition comprising a parvoviral vector. In particular, the current invention shows that DNA impurities are not randomly encapsulated within a parvoviral virion. The invention therefore relates to a method for identifying and quantifying a nucleic acid impurity in a composition comprising a parvoviral vector. Finally, the current invention relates to method of determining whether a composition comprising a parvoviral vector is regarded as clinically pure.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: June 1, 2021
    Assignee: UNIQURE IP B.V.
    Inventors: Jacek Lubelski, Wilhelmus Theodorus Johannes Maria Christiaan Hermens
  • Patent number: 11021703
    Abstract: This invention relates to a method of characterizing the modified base status of a transcriptome, which involves contacting a transcriptome comprising one or more modified bases with an antibody specific to the modified bases under conditions effective to bind the antibody to the modified bases; isolating, from the transcriptome, a pool of RNA transcripts to which the antibody binds; and identifying isolated RNA transcripts that are present in a higher abundance in the isolated pool relative to the transcriptome, where each of the isolated RNA transcripts that are present in a higher abundance in the isolated pool together characterize the modified base status of the transcriptome. Also disclosed are a method of diagnosis or prognosis of a disease, a method of determining the effect of a treatment on modified base levels in RNA, and a kit for characterizing the modified base status of a transcriptome.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: June 1, 2021
    Assignee: CORNELL UNIVERSITY
    Inventors: Samie R. Jaffrey, Kate D. Meyer, Christopher E. Mason
  • Patent number: 11021525
    Abstract: The present invention provides for a synthetic transcription factor (TF) comprising a first peptide capable of binding a target ligand, a second peptide capable of binding a target DNA, and a peptide linker linking the first and second peptides. The present invention also provide for a system for modulating the mutagenesis frequency of a host cell. The host cell has a mutator rate (R) which is inversely proportional to a phenotypic trait (P).
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: June 1, 2021
    Assignee: The Regents of the University of California
    Inventors: Howard H. Chou, Jay D. Keasling, Sergey Zotchev
  • Patent number: 11015189
    Abstract: Recombinant adeno-associated viral (AAV) capsid proteins are provided. Methods for generating the recombinant adeno-associated viral capsid proteins and a library from which the capsids are selected are also provided.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 25, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Leszek Lisowski, Mark A. Kay
  • Patent number: 10995333
    Abstract: The present disclosure provides methods and systems for nucleic acid processing. A method for preparing a sequencing set may include providing a template nucleic acid and amplifying the template nucleic acid to provide a complementary nucleic acid. Next, the complementary nucleic acid may be fragmented and barcoded to produce a first set of barcoded fragments comprising a plurality of first barcoded fragments. Next, the plurality of first barcoded fragments may be fragmented to yield a second set of barcoded fragments comprising a plurality of second barcoded fragments.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 4, 2021
    Assignee: 10X GENOMICS, INC.
    Inventor: Katherine Pfeiffer
  • Patent number: 10920196
    Abstract: The present disclosure relates to methods for enhancing cultured meat production, such as livestock-autonomous meat production. In certain aspects, the meat is any metazoan tissue or cell-derived comestible product intended for use as a comestible food or nutritional component by humans, companion animals, domesticated or captive animals whose carcasses are intended for comestible use, service animals, conserved animal species, animals used for experimental purposes, or cell cultures.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: February 16, 2021
    Assignees: The Curators of the University of Missouri, Memphis Meats, Inc.
    Inventors: Nicholas J. Genovese, R. Michael Roberts, Bhanu Prakash V. L. Telugu
  • Patent number: 10907150
    Abstract: Described herein are modified guide RNAs such as a single guide RNA including, from 5? to 3?, a single-stranded protospacer sequence, a first complementary strand of a binding region for the Cas9 polypeptide, an aptamer that binds a biotin-binding molecule, and a second complementary strand of the binding region for the Cas9 polypeptide. Also described is an RNP complex including the modified guide RNA and a Cas9 polypeptide or active fragment thereof. Also included are methods of modifying target genes in cells using the modified guide RNAs.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 2, 2021
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jared Matthew Carlson-Stevermer, Krishanu Saha, Amr Ashraf Abdeen, Lucille Katherine Kohlenberg
  • Patent number: 10894950
    Abstract: Fusion proteins comprising a DNA binding domain, e.g., a TAL effector repeat array or zinc finger, and a catalytic domain comprising a sequence that catalyzes hydroxylation of methylated cytosines in DNA, and methods of use thereof.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 19, 2021
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Morgan Maeder, James Angstman
  • Patent number: 10894151
    Abstract: Provided herein are devices and methods used to produce tattoo biosensors that are based on spatially controlled intracutaneous gene delivery of optical reporters driven by specific transcription factor pathways for a given cytokine or other analyte. The biosensors can be specific to a given analyte, or more generically represent the convergence of several cytokines into commonly shared intracellular transcription factor pathways. These biosensors can be delivered as an array in order to monitor multiple cytokines. Biosensor redeployment can enable chronic monitoring from months to years. The tattooed biosensor array of the present invention includes endogenous reporter cells, naturally tuned to each patient's own biology and can be used to reliably measure the state of a patient in real-time.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 19, 2021
    Assignees: Carnegie Mellon University, University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: O. Burak Ozdoganlar, Marcel P. Bruchez, Phil G. Campbell, Jonathan W. Jarvik, Louis Falo, Geza Erdos
  • Patent number: 10865407
    Abstract: The present invention relates to a method based on the use of restriction enzyme digestion and ligation via the cleavage sites, thereby to prepare two or more standardized expression cassettes.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: December 15, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Johannes Andries Roubos, Herman Jan Pel, Bernard Meijrink
  • Patent number: 10851370
    Abstract: Disclosed herein are synthetic nucleic acids comprising a nucleic acid sequence that encodes a codon-Adapted Nuclear Argonaute protein (ANAGO) that is a species-specific to a eukaryote, and compositions comprising ANAGO and donor molecules for use in homologous recombination directed targeted gene editing in the eukaryote.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 1, 2020
    Assignee: PILLARGO, INC.
    Inventors: Ying Wu, Jiagang Zhao
  • Patent number: 10853244
    Abstract: A method of writing data to a DNA strand comprises cutting an address block of a selected address-data block unit of the DNA strand to form first and second DNA strings, and inserting a replacement address-data block that includes a replacement data segment between the first DNA string and the second DNA string to provide a rewritten DNA strand having valid address followed by valid data and an invalid address followed by invalid data.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: December 1, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Christopher Petti, Srikanth Ranganathan
  • Patent number: 10844438
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 24, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 10844440
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 24, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin