Patents Examined by Jeremy S Valentiner
  • Patent number: 10101208
    Abstract: The present invention relates to a ring-down spectrometry apparatus in absorption saturation condition, for measuring the concentration of a gas through a measurement of the spectrum of a molecular transition of said gas. The apparatus includes a laser source, an adjuster for varying the wavelength of said radiation emitted by said laser, and a resonant cavity. A photodetector is adapted to detect an electromagnetic radiation beam and is adapted to generate a decay signal. An electronic circuit receives the signal from the photodetector and is adapted to convert it to a processor. A processor is adapted to receive said decay signal from the photodetector and perform interpolation to obtain a concentration of said gas.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: October 16, 2018
    Assignee: CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Giovanni Giusfredi, Iacopo Galli, Pablo Cancio Pastor, Davide Mazzotti, Paolo De Natale
  • Patent number: 10079983
    Abstract: Infrared cameras can include an infrared sensor and an infrared lens assembly defining an optical axis. A camera can include an inner gear engaging the infrared lens assembly and a focus ring that engages the inner gear. The inner gear can engage the focus ring and the infrared lens assembly such that rotation of the focus ring about its central axis can cause the rotation of the infrared lens assembly about its optical axis, which may be offset from the central axis of the focus ring. The camera can include a sensor can threadably engaging the infrared lens assembly and fixed relative to the infrared sensor such that rotation of the infrared lens assembly causes the infrared lens assembly to move relative to the infrared sensor. The sensor can support other components such as a visible light lens assembly or a laser within a perimeter of the focus ring.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 18, 2018
    Assignee: Fluke Corporation
    Inventors: Patrick R. Woolfenden, Brian R. Gattman, William Weidner
  • Patent number: 10078888
    Abstract: Aspects of the disclosure are directed toward systems and methods for combining aspects of a plurality of indexed images taken at different focus distances in order to generate a final image having objects at a variety of depths remain in focus. High frequency frames associated with each of the plurality of images can be generated, each high frequency frame being representative of the high frequency content of the associated image. The high frequency content in a plurality of regions in each of the plurality of high frequency frames can be analyzed to determine which regions include valid high frequency content. A final image can be generated comprising, for each of the plurality of regions, image data from the image having like index as the high frequency frame having the greatest valid high frequency content in that region.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 18, 2018
    Assignee: Fluke Corporation
    Inventors: Jamie Rhead, Brian R. Gattman, Paul Grinberg, Matthew H. Skorina, Eugene Skobov
  • Patent number: 10070076
    Abstract: A method reduces drift induced by environment changes when imaging radiation from a scene in two wavelength bands. Scene radiation is focused by two wedge-shaped components through a lens onto a detector that includes three separate regions. The wedge-shaped components are positioned at a fixed distance from the lens. The radiation from the scene is imaged separately onto two of the detector regions through an f-number of less than approximately 1.5 to produce a first pixel signal. Imaged radiation on each of the two regions includes radiation in one respective wavelength band. Radiation from a radiation source is projected by at least one of the wedge-shaped components through the lens onto a third detector region to produce a second pixel signal. The first pixel signal is modified based on a predetermined function that defines a relationship between second pixel signal changes and first pixel signal changes induced by environment changes.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 4, 2018
    Assignee: CI SYSTEMS (ISRAEL) LTD.
    Inventors: Dario Cabib, Moshe Lavi, Liviu Singher
  • Patent number: 10048390
    Abstract: There is provided an x-ray detector including a number of adjacent detector modules arranged in a configuration having central parts and peripheral parts. The x-ray detector is configured to have higher dose efficiency in the central parts and lower dose efficiency in the peripheral parts.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: August 14, 2018
    Assignee: PRISMATIC SENSORS AB
    Inventors: Mats Danielsson, Mats Persson, Martin Sjolin
  • Patent number: 10001583
    Abstract: The present disclosure describes structured light projection in which a structured light projector includes a light emitter and a compound patterned mask. The mask includes a spacer substrate that is transparent to a wavelength of light emitted by the light emitter. On a first side of the spacer substrate is a first reflective surface having apertures therein to allow light to pass through. Lenses are arranged to focus light, produced by the light emitter, toward the apertures in the first reflective surface. A second reflective surface on a second side of the spacer substrate opposite the first side has apertures therein to allow light passing through the spacer substrate to exit the compound patterned mask.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: June 19, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Dmitry Bakin, Matthias Gloor, Moshe Doron
  • Patent number: 9995832
    Abstract: A radiation detector includes: a radiation detecting module including a photoconductive layer containing at least one heavy metal; a voltage controller configured to detect current flowing through the photoconductive layer and control application of a voltage to the photoconductive layer based on the detected current; and a sealing part configured to seal the photoconductive layer and surround a portion of the radiation detecting module.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 12, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young Kim, Jae-Chul Park
  • Patent number: 9995676
    Abstract: A method of preparation and optical analysis of a solid sample by multiple internal reflection infrared spectroscopy comprising: obtaining a least one substrate that is transparent to infrared light and comprises at least a main front face and a main rear face; producing at least one solid sample on the main front face of the substrate; installing around at least one part of the sample an element comprising a chamber having an aperture that opens onto the solid sample and defines a leaktight interaction zone (Zi) in relation to the outside of the chamber; feeding the chamber with a fluid with controlled parameters to control the environment in the leaktight interaction zone; sending an infrared light beam through the substrate; and recovering the beam after it has undergone multiple internal reflections in the substrate.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: June 12, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Christophe Licitra, Nevine Rochat
  • Patent number: 9989410
    Abstract: A photo-detector device may include a substrate having a bottom surface. The photo-detector device may further include a photocell secured to the bottom surface of the substrate. The photo-detector device may further include a metallic block having a top portion secured to a bottom surface of the substrate to enclose the photocell, wherein an opening is formed within the metallic block that extends from the top portion of the metallic block to a bottom portion of the metallic block to form an aperture for light to travel through the metallic block to the photocell. The photo-detector device may further include a member insertable into the metallic block to vary an open area of the aperture.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 5, 2018
    Assignee: Heraeus Noblelight America LLC
    Inventors: Keith Andrew Helms, Timothy Allan Dombkowski, James Robert Elliott
  • Patent number: 9983132
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 29, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley
  • Patent number: 9964650
    Abstract: A radiation detector includes a plurality of pixels configured to detect radiation, and at least one of the plurality of pixels includes a radiation absorbing layer configured to convert photons incident on the radiation absorbing layer into a first electrical signal, and a photon processor including a plurality of storages configured to count and store the number of the photons based on the first electrical signal. At least one of the plurality of storages is configured to compare the first electrical signal with a first reference value to obtain a second electrical signal, and count and store the number of the photons based on a third electrical signal that is obtained based on a comparison of the second electrical signal with a second reference value.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: May 8, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Min-kook Cho
  • Patent number: 9958330
    Abstract: A sensor to detect information on a subject by using an electromagnetic wave includes a transmitting unit having a generating element and a first antenna, a polarization converting unit, and a receiving unit having a second antenna and a detecting device. The generating element generates an electromagnetic wave, and the first antenna emits the electromagnetic wave generated by the generating element as first polarization. The polarization converting unit converts the first polarization into second polarization by changing a polarization direction of the first polarization. The second antenna receives the second polarization, and the detecting device detects the electromagnetic wave received by the second antenna. The transmitting unit and the receiving unit are disposed on the same substrate.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 1, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Koyama, Toshihiko Ouchi
  • Patent number: 9910168
    Abstract: A method for detecting both gamma-ray events and neutron events with a common detector, where the detector includes a layer of semiconductor material bounded by electrodes, and the electrodes include an anode on one side of the semiconductor material and a cathode on the other side of the semiconductor material, includes the following steps: (a) monitoring the electrical signal at each of the anode and the cathode; and (b) comparing the magnitude of the signals at the anode and the cathode, and the transit time difference between the start of the anode signal and the time when the anode signal reaches a maximum, relatively constant value. In the comparing step, predetermined criteria are used to differentiate between gamma-ray events and neutron events.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 6, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: David R. Rhiger, Kelly A. Jones
  • Patent number: 9910026
    Abstract: A tracer composite comprises a tracer disposed in a metal-based carrier which comprises: a cellular nanomatrix and a metal matrix disposed in the cellular nanomatrix, wherein the tracer is detectable at a range of from about 1 ppt to about 1,000 ppm.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 6, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Zhihui Zhang, Guijun Deng, Zhiyue Xu, Guobin Ma, Ke Wang
  • Patent number: 9903760
    Abstract: A resin identification device capable of measuring samples having various shapes is provided. The resin identification device includes a Fourier transform infrared spectrophotometer (FTIR), and sample placing plates 31 and 32 having an opening 33. The FTIR includes: an infrared light source section 10, irradiating a sample S with infrared light; an infrared light detection section 20, detecting light intensity information of the infrared light reflected from the sample S; and a control section 50, obtaining the light intensity information. By replacement of the sample S in a predetermined position so as to block off the opening 33, the infrared light source section 10 irradiates infrared light on a lower surface of the sample S, and the infrared light detection section 20 detects the light intensity information of the infrared light reflected by the lower surface of the sample S.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: February 27, 2018
    Assignee: SHIMADZU CORPORATION
    Inventor: Toyohiko Tanaka
  • Patent number: 9897634
    Abstract: Methods and devices for spectrum sensing using sliding window energy detection are provided. A sliding window energy detection test having a number of continuously-performed tests can be analyzed according to a desired cumulative false alarm rate to provide a corresponding, testing threshold. Based on the testing threshold and target signal to noise ratio, a testing window length is selected such that the sliding window energy detection is performed for a minimum expected discrete detection time. A sliding window energy detector can then obtain the selected testing window length and the corresponding, testing threshold for spectrum sensing. The sliding window energy detector includes a sampling unit, a detection probability analyzer, a testing statistic generator, a false alarm analyzer, a comparing unit, and a declaring unit.
    Type: Grant
    Filed: October 4, 2014
    Date of Patent: February 20, 2018
    Assignee: INTELLIGENT FUSION TECHNOLOGY, INC.
    Inventors: Xin Tian, Genshe Chen, Dan Shen, Zhi Tian, Khanh D. Pham, Erik Blasch
  • Patent number: 9876968
    Abstract: A method reduces drift induced by environment changes when imaging radiation from a scene in two wavelength bands. Scene radiation is focused by two wedge-shaped components through a lens onto a detector that includes three separate regions. The wedge-shaped components are positioned at a fixed distance from the lens. The radiation from the scene is imaged separately onto two of the detector regions through an f-number of less than approximately 1.5 to produce a first pixel signal. Imaged radiation on each of the two regions includes radiation in one respective wavelength band. Radiation from a radiation source is projected by at least one of the wedge-shaped components through the lens onto a third detector region to produce a second pixel signal. The first pixel signal is modified based on a predetermined function that defines a relationship between second pixel signal changes and first pixel signal changes induced by environment changes.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 23, 2018
    Assignee: CI SYSTEMS (ISRAEL) LTD.
    Inventors: Dario Cabib, Moshe Lavi, Liviu Singher
  • Patent number: 9864079
    Abstract: According to an embodiment, a radiation detection device includes a scintillator layer, a plurality of detectors, a setting unit, an identifier, and a corrector. The scintillator layer is configured to convert radiation into scintillation light. The detectors are arranged along a first surface facing the scintillator layer to detect light. The setting unit is configured to set one of the detectors as a first detector to be corrected. The identifier is configured to identify, out of the detectors, a second detector that detects a synchronization signal synchronizing with a first signal detected by the first detector. The corrector is configured to correct an energy spectrum of light detected by the first detector on the basis of a second signal serving as the synchronization signal in signals detected by the second detector, the first signal, and characteristic X-ray energy of a scintillator raw material constituting the scintillator layer.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 9, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Fujii, Go Kawata, Yasuharu Hosono, Kazunori Miyazaki, Rei Hasegawa
  • Patent number: 9857295
    Abstract: A comparative discrimination spectral detection (CDSD) system for the identification of chemicals with overlapping spectral signatures, including: a radiation source for delivering radiation to a sample; a radiation collector for collecting radiation from the sample; a plurality of beam splitters for splitting the radiation collected from the sample into a plurality of radiation beams; a plurality of low-resolution optical filters for filtering the plurality of radiation beams; a plurality of radiation detectors for detecting the plurality filtered radiation beams; and a processor for: receiving a set of reference spectra related to a set of target chemicals and generating a set of base vectors for the set of target chemicals from the set of reference spectra, wherein the set of base vectors define a geometrical shape in a configuration space; receiving a set of filtered test spectra from the plurality of radiation detectors and generating a set of test vectors in the configuration space from the set of filte
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: January 2, 2018
    Assignee: The University Of North Carolina At Charlotte
    Inventors: Menelaos K. Poutous, Ishwar D. Aggarwal, Kevin J. Major, Jas S. Sanghera, Ken Ewing
  • Patent number: 9857305
    Abstract: An optical sensor may have multiple detection channels to detect different characteristics of a fluid. For example, an optical sensor used in industrial cleaning and sanitizing applications may have multiple detection channels to detect when a system is both clean and properly sanitized. In one example, an optical sensor includes an optical emitter that directs light into a fluid, a first optical detector that detects light transmitted through the fluid, a second optical detector that detects light scattered by the fluid, and a third optical detector that detects fluorescent emissions emitted by the fluid. The optical emitter and optical detectors can be positioned around an optical analysis area. The optical sensor may include filters that control the characteristics of light detected by each of the optical detectors.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: January 2, 2018
    Assignee: Ecolab USA, Inc.
    Inventors: Eugene Tokhtuev, Christopher J. Owen, Anatoly Skirda, Viktor Slobodyan, Paul Simon Schilling, William M. Christensen