Patents Examined by John Bodnar
  • Patent number: 11557747
    Abstract: A display device includes a substrate and a plurality of first light-emitting elements having a microcavity structure on the substrate. Each of the plurality of first light-emitting elements includes a first light-emitting film and a first upper electrode and a first lower electrode sandwiching the first light-emitting film. The peak wavelength of an emission spectrum of the first light-emitting film is in a wavelength range where the luminosity curve slopes negatively. Within a wavelength range where the peak wavelength of a multiple interference spectrum caused by the microcavity structure varies when the viewing angle varies from 0° to 60°, the luminosity curve slopes negatively, and the emission spectrum slopes positively.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: January 17, 2023
    Assignees: WUHAN TIANMA MICRO-ELECTRONICS CO., LTD., TIANMA JAPAN, LTD.
    Inventors: Shigeru Mori, Keita Hamada
  • Patent number: 11542151
    Abstract: The present disclosure relates to a microelectromechanical systems (MEMS) apparatus. The MEMS apparatus includes a base substrate and a conductive routing layer disposed over the base substrate. A bump feature is disposed directly over the conductive routing layer. Opposing outermost sidewalls of the bump feature are laterally between outermost sidewalls of the conductive routing layer. A MEMS substrate is bonded to the base substrate and includes a MEMS device directly over the bump feature. An anti-stiction layer is arranged on one or more of the bump feature and the MEMS device.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Sung Chang, Fei-Lung Lai, Shang-Ying Tsai, Cheng Yu Hsieh
  • Patent number: 11545486
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to an integrated thin film resistor with a metal-insulator-metal capacitor and methods of manufacture. The structure includes: a first buffer contact on a substrate; a second buffer contact on the substrate, the second buffer contact being on a same wiring level as the first buffer contact; a resistive film contacting the first buffer contact and the second buffer contact, the resistive film extending on the substrate between the first buffer contact and the second buffer contact; and electrical contacts landing on both the first buffer contact and the second buffer contact, but not directly contacting with the resistive film.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: January 3, 2023
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chengang Feng, Yanxia Shao, Yudi Setiawan, Handoko Linewih, Xuesong Rao
  • Patent number: 11545546
    Abstract: In an embodiment, a device includes: a first source/drain region; a second source/drain region; an inter-layer dielectric (ILD) layer over the first source/drain region and the second source/drain region; a first source/drain contact extending through the ILD layer, the first source/drain contact connected to the first source/drain region; a second source/drain contact extending through the ILD layer, the second source/drain contact connected to the second source/drain region; and an isolation feature between the first source/drain contact and the second source/drain contact, the isolation feature including a dielectric liner and a void, the dielectric liner surrounding the void.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu
  • Patent number: 11538720
    Abstract: A semiconductor device includes a first stack of nanowires above a substrate with a first gate structure over, around, and between the first stack of nanowires and a second stack of nanowires above the substrate with a second gate structure over, around, and between the second stack of nanowires. The device also includes a first source/drain region contacting a first number of nanowires of the first nanowire stack and a second source/drain region contacting a second number of nanowires of the second nanowire stack such that the first number and second number of contacted nanowires are different.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 27, 2022
    Assignee: TESSERA LLC
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Balasubramanian S. Pranatharthiharan, John Zhang
  • Patent number: 11532696
    Abstract: Semiconductor devices including a capacitor and methods of forming the same are provided. The semiconductor devices may include a capacitor that include a lower electrode, an upper electrode on the lower electrode, and a dielectric layer extending between the lower electrode and the upper electrode. The lower electrode may include a doped region that contacts the dielectric layer, and the doped region of the lower electrode is configured to increase a capacitance of the capacitor.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 20, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gihee Cho, Jungoo Kang, Sangyeol Kang, Hyunsuk Lee
  • Patent number: 11527610
    Abstract: An integrated circuit structure comprises a silicon substrate and a III-nitride (III-N) substrate over the silicon substrate. A first III-N transistor and a second III-N transistor is on the III-N substrate. An insulator structure is formed in the III-N substrate between the first III-N transistor and the second III-N, wherein the insulator structure comprises one of: a shallow trench filled with an oxide, nitride or low-K dielectric; or a first gap adjacent to the first III-N transistor and a second gap adjacent to the second III-N transistor.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11522518
    Abstract: Disclosed is a device that includes a crystalline substrate and a patterned aluminum-based material layer disposed onto the crystalline substrate. The patterned aluminum-based material layer has a titanium-alloyed surface. A titanium-based material layer is disposed over select portions of the titanium-alloyed surface. In an exemplary embodiment, the patterned aluminum-based material layer forms a pair of interdigitated transducers to provide a surface wave acoustic (SAW) device. The SAW device of the present disclosure is usable to realize SAW-based filters for wireless communication equipment.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 6, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Casey Kirkpatrick, Andrew P. Ritenour
  • Patent number: 11515148
    Abstract: Method for producing a semiconductor device, including: producing, on a first region of a surface layer comprising a first semiconductor and disposed on a buried dielectric layer, a layer of a second compressive strained semiconductor along a first direction; etching a trench through the layer of the second semiconductor forming an edge of a portion of the layer of the second semiconductor oriented perpendicularly to the first direction, and wherein the bottom wall is formed by the surface layer; thermal oxidation forming in the surface layer a semiconductor compressive strained portion along the first direction and forming in the trench an oxide portion; producing, through the surface layer and/or the oxide portion, and through the buried dielectric layer, dielectric isolation portions around an assembly formed of the compressive strained semiconductor portion and the oxide portion; and wherein the first semiconductor is silicon, the second semiconductor is SiGe, and said at least one compressive strained
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 29, 2022
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Loic Gaben, Cyrille Le Royer, Fabrice Nemouchi, Nicolas Posseme, Shay Reboh
  • Patent number: 11508735
    Abstract: A semiconductor device includes a first Static Random Access Memory (SRAM) array including a first SRAM cell and a second SRAM array including a second SRAM cell. The first SRAM cell includes a first pull-down (PD) device including a single fin N-type FinFET. The single fin N-type FinFET includes a first gate dielectric having a first thickness. The second SRAM cell includes a second PD device including a multiple fin N-type FinFET. The multiple fin N-type FinFET includes a second gate dielectric having a second thickness. The first thickness is greater than the second thickness.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11508575
    Abstract: A method of fan-out processing includes providing or obtaining a fused glass laminate sheet or wafer having a core layer and a first clad layer and a second clad layer, the core layer comprising a core glass having a core glass coefficient of thermal expansion ?core, the first clad layer and the second clad layer each comprising a clad glass having a clad glass coefficient of thermal expansion ?clad, where ?clad>?core; affixing integrated circuit devices to the second clad layer of the laminate sheet or wafer; forming a fan-out layer on or above the integrated circuit devices; and removing some of the first clad layer to decrease warp of the sheet or wafer with integrated circuit devices and a fan-out layer thereon. A method of producing a laminate sheet or wafer having a selected CTE is also disclosed.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 22, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Jin Su Kim, Yu Xiao
  • Patent number: 11495657
    Abstract: A process is provided for forming a thin film resistor (TFR) in an integrated circuit (IC) device. A TFR film is formed and annealed over an IC structure including IC elements and IC element contacts. An oxide cap is formed over the TFR film, which acts as a hardmask during a TFR etch of the TFR film to define a TFR element, which may eliminate the use of a photomask and thereby eliminate post-etch removal of photomask polymer. TFR edge spacers may be formed over lateral edges of the TFR element to insulate such TFR element edges. TFR contact openings are etched in the oxide cap over the TFR element, and a metal layer is formed over the IC structure and extending into the TFR contact openings to form metal contacts to the IC element contacts and the TFR element.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 8, 2022
    Assignee: Microchip Technology Incorporated
    Inventors: Paul Fest, Jacob Williams, Josh Kaufman, Greg Dix
  • Patent number: 11488872
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first semiconductor layer, an insulating layer and a second semiconductor layer in a substrate. The method also includes forming a first isolation feature in the first semiconductor layer, the insulating layer and the second semiconductor layer. The method further includes forming a transistor in and over the substrate adjacent to the first isolation feature. In addition, the method includes etching the first isolation feature to form a trench extending below the insulating layer. The method also includes filling the trench with a metal material to form a second isolation feature in the first isolation feature.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Han Tsai, Po-Jen Wang, Chun-Li Wu, Ching-Hung Kao
  • Patent number: 11488970
    Abstract: A method of forming a memory cell includes forming a first polysilicon block over an upper surface of a semiconductor substrate and having top surface and a side surface meeting at a sharp edge, forming an oxide layer with a first portion over the upper surface, a second portion directly on the side surface, and a third portion directly on the sharp edge, performing an etch that thins the oxide layer in a non-uniform manner such that the third portion is thinner than the first and second portions, performing an oxide deposition that thickens the first, second and third portions of the oxide layer, wherein after the oxide deposition, the third portion is thinner than the first and second portions, and forming a second polysilicon block having one portion directly on the first portion of the oxide layer and another portion directly on the third portion of the oxide layer.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: November 1, 2022
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jeng-Wei Yang, Man-Tang Wu, Boolean Fan, Nhan Do
  • Patent number: 11482986
    Abstract: Disclosed is a device that includes a crystalline substrate and a patterned aluminum-based material layer disposed onto the crystalline substrate. The patterned aluminum-based material layer has a titanium-alloyed surface. A titanium-based material layer is disposed over select portions of the titanium-alloyed surface. In an exemplary embodiment, the patterned aluminum-based material layer forms a pair of interdigitated transducers to provide a surface wave acoustic (SAW) device. The SAW device of the present disclosure is usable to realize SAW-based filters for wireless communication equipment.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: October 25, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Casey Kirkpatrick, Andrew P. Ritenour
  • Patent number: 11476273
    Abstract: Provided are various three-dimensional flash memory devices. A three-dimensional flash memory device includes a gate stacked structure, separate arc-shaped channel pillars, source/drain pillars and a charge storage structure. The gate stacked structure is disposed on a substrate and includes a plurality of gate layers electrically insulated from each other. The arc-shaped channel pillar are disposed on the substrate and located in the gate stacked structure. The source/drain pillars are disposed on the substrate and penetrate through the gate stacked structure, wherein two source/drain pillars are disposed at two ends of each of the arc-shaped channel pillars. The charge storage structure is disposed between each of the plurality of gate layers and the corresponding arc-shaped channel pillar.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: October 18, 2022
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Hang-Ting Lue
  • Patent number: 11476074
    Abstract: A vacuum channel field effect transistor includes a first insulator on a p-type semiconductor substrate, a gate electrode on the first insulator, a second insulator on the gate electrode, a drain electrode on the second insulator, and an n+ impurity diffusion layer in the surface of the p-type semiconductor substrate, the n+ impurity diffusion layer being in contact with a side wall including side faces of the first insulator, the gate electrode, and the second insulator. Application of predetermined voltages to the n+ impurity diffusion layer, the gate electrode, and the drain electrode causes charge carriers in the n+ impurity diffusion layer to travel through a vacuum or air faced by the side wall to the drain electrode, which can increase the source-drain current.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: October 18, 2022
    Inventors: Yoshiyuki Ando, Rieko Ando, Yukiko Noguchi, Emiko Takahira
  • Patent number: 11469098
    Abstract: A method for depositing an oxide film on a substrate by a cyclical deposition is disclosed. The method may include: depositing a metal oxide film over the substrate utilizing at least one deposition cycle of a first sub-cycle of the cyclical deposition process; and depositing a silicon oxide film directly on the metal oxide film utilizing at least one deposition cycle of a second sub-cycle of the cyclical deposition process. Semiconductor device structures including an oxide film deposited by the methods of the disclosure are also disclosed.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 11, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Fu Tang, Delphine Longrie, Peng-Fu Hsu
  • Patent number: 11462436
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. An insulating structure is directly adjacent sidewalls of the lower fin portion of the fin. A first gate electrode is over the upper fin portion and over a first portion of the insulating structure. A second gate electrode is over the upper fin portion and over a second portion of the insulating structure. A first dielectric spacer is along a sidewall of the first gate electrode. A second dielectric spacer is along a sidewall of the second gate electrode, the second dielectric spacer continuous with the first dielectric spacer over a third portion of the insulating structure between the first gate electrode and the second gate electrode.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Heidi M. Meyer, Ahmet Tura, Byron Ho, Subhash Joshi, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 11456306
    Abstract: A nonvolatile memory device is provided. The nonvolatile memory device comprises a floating gate arranged over a first active region, whereby the first active region is in an active layer of a substrate. A metal-insulator-metal (MIM) capacitor may be provided laterally adjacent to the floating gate, whereby a portion of the metal-insulator-metal capacitor is in the active layer. A contact pillar may connect a first electrode of the metal-insulator-metal capacitor to the floating gate.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: September 27, 2022
    Assignee: GLOBALFOUNDRIES Singapore Ptd. Ltd.
    Inventors: Bong Woong Mun, Jeoung Mo Koo