Patents Examined by Joshua King
  • Patent number: 11527865
    Abstract: An optoelectronic semiconductor device includes a semiconductor body in which an active layer configured to generate or detect electromagnetic radiation, a first interlayer and a p-conducting contact layer are formed, and a connection layer applied to the semiconductor body, wherein the contact layer is disposed between the first interlayer and the connection layer and adjoins the connection layer, the active layer is arranged on a side of the first interlayer remote from the contact layer, the first interlayer and the contact layer are based on a nitride compound semiconductor, the contact layer is doped with a p-dopant, the contact layer has a thickness of at most 50 nm, and the contact layer includes a lower aluminum content than the first interlayer.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: December 13, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Matthias Peter, Teresa Wurm, Christoph Eichler
  • Patent number: 11509109
    Abstract: A broadband optical amplifier for operation in the 2 ?m visible wavelength band is based upon a single-clad Tm-doped fiber amplifier (TDFA). A compact pump source uses a combination of low-power laser diode with a fiber laser to provide a multi-watt pump beam without needing to include thermal management and/or pump wavelength stability components. The broadband optical amplifier is therefore able to be relatively compact device with fiber coupled output powers of >0.5 W CW, high small signal gain, low noise figure, and large OSNR, important for use as a versatile wideband preamplifier or power booster amplifier.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: November 22, 2022
    Assignee: Cybel, LLC.
    Inventors: Jean-Marc Delavaux, Robert E. Tench, Alexandre Amavigan
  • Patent number: 11509111
    Abstract: A kind of all-solid-state high-power slab laser based on phonon band-edge emission, which is comprised of a pumping source, a focusing system, a resonant cavity and a self-frequency-doubling crystal; the said self-frequency-doubling crystal is a Yb-doped RECOB crystal cut into slab shape along the direction of the crystal's maximum effective nonlinear coefficient of its non-principal plane; by changing the cutting direction of the crystal, the phase matching of different wavelengths is realized, thus realizing laser output at the band of 560-600 nm; the said pumping source is a diode laser matrix with a wavelength of 880 nm-980 nm; the input cavity mirror and the output cavity mirror are coated with films to obtain laser output at the band of 560-600 nm; the two large faces of the said self-frequency-doubling crystal is cooled by heat sink and located between the input cavity mirror and the output cavity mirror.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 22, 2022
    Assignee: SHANDONG UNIVERSITY
    Inventors: Haohai Yu, Huaijin Zhang, Jinheng Du, Jiyang Wang
  • Patent number: 11502481
    Abstract: A semiconductor light-emitting module according to the present embodiment includes a plurality of semiconductor light-emitting elements each outputting light of a desired beam projection pattern; and a support substrate holding the plurality of semiconductor light-emitting elements. Each of the plurality of semiconductor light-emitting elements includes a phase modulation layer configured to form a target beam projection pattern in a target beam projection region. The plurality of semiconductor light-emitting elements include first and second semiconductor light-emitting elements that are different in terms of at least any of a beam projection direction, the target beam projection pattern, and a light emission wavelength.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 15, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro Sugiyama, Yuu Takiguchi, Yoshitaka Kurosaka, Kazuyoshi Hirose, Yoshiro Nomoto, Soh Uenoyama
  • Patent number: 11502477
    Abstract: An optical fiber may include a core in which core-guided light generated by one or more light sources propagates along a length of the at least one optical fiber, one or more claddings, surrounding the core, to guide cladding-guided light generated by the one or more light sources along the length of the at least one optical fiber, and a reflector structure machined into the at least one optical fiber. The reflector structure may include multiple angled facets arranged at one or more respective angles relative to an axis of the optical fiber to reflect at least a portion of the core-guided light and/or the cladding-guided light passing through the optical fiber.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: November 15, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Martin H. Muendel, Richard D. Faulhaber, Michael Lovelady, James J. Morehead, Andreas Oehler
  • Patent number: 11482831
    Abstract: Provided is a laser device in which: a laser medium doped with ytterbium emits light upon absorption of excitation light; the light emitted by the laser medium is amplified to obtain output light; and the output light is outputted in the form of a plurality of pulses. In the laser device, a spatial filter is disposed in the optical path of the light emitted by the laser medium or is disposed in the optical path of the output light outputted from an optical resonator, the spatial filter being configured to filter out a portion of the light or of the output light around the optical axis.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 25, 2022
    Assignee: National Institutes for Quantum Science and Technology
    Inventors: Yutaka Akahane, Makoto Aoyama, Kanade Ogawa, Koichi Yamakawa
  • Patent number: 11482838
    Abstract: An optical waveguide structure includes a lower cladding layer positioned on a substrate; an optical guide layer positioned on the lower cladding layer; an upper cladding layer positioned on the optical guide layer; and a heater positioned on the upper cladding layer. The lower cladding layer, the optical guide layer, and the upper cladding layer constitute a mesa structure. The optical guide layer has a lower thermal conductivity than the upper cladding layer. An equation “Wwg?Wmesa?3×Wwg” is satisfied, wherein Wmesa represents a mesa width of the mesa structure, and Wwg represents a width of the optical guide layer. The optical guide layer occupies one-third or more of the mesa width in a width direction of the mesa structure.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 25, 2022
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasutaka Higa, Yasumasa Kawakita
  • Patent number: 11456577
    Abstract: A monolithic QCL/APD IR Transceiver in which the QCL transmitter and APD receiver have the same N MQW stage composition and variation in thickness in the z direction for all positions in x and y directions. The heterostructure is configured via asymmetric stages, additional stages for the APD or by reversing the polarity of the p-n junction for the APD or a combination thereof such that the upper energy state in the QCL under forward bias is confined to the quantum well and in the APD under reverse bias is near the top of the quantum well in energy and localized in the quantum well to spatially overlap with the lower energy state to facilitate detection of echo photons. The QCL and APD may be positioned end-to-end, side-by-side or as a common region of the heterostructure.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 27, 2022
    Assignee: Raytheon Company
    Inventors: Steven M. Stoltz, Terrell D. Neal
  • Patent number: 11451006
    Abstract: A fiber laser device includes: an amplifying fiber; a delivery fiber in which laser light that has been outputted from the amplifying fiber is guided; and a Raman filter that reflects part of Raman scattered light that is generated by stimulated Raman scattering caused to the laser light.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: September 20, 2022
    Assignee: Fujikura Ltd.
    Inventor: Shinichi Sakamoto
  • Patent number: 11424595
    Abstract: A backside Vertical Cavity Surface Emitting Laser (VCSEL) has a substrate. A first mirror device is formed on the substrate. An active region is formed on the first mirror device. A second mirror device is formed on the active region. A pillar is formed by directional Inductive Coupled Plasma-Reactive Ion Etcher (ICP-RIE). The pillar exposes a portion of the first mirror device, the active region and the second mirror device. A first metal contact is formed over a top section of the pillar. A second metal contact is formed on the substrate. An opening formed in the second metal contact and aligned with the pillar.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: August 23, 2022
    Assignee: OEPIC Semiconductors, Inc.
    Inventors: Yi-Ching Pao, Majid Riaziat, Ta-Chung Wu, Wilson Kyi, James Pao
  • Patent number: 11418003
    Abstract: A chip may include a first substantially planar isolation layer with a first surface and a second surface opposite the first surface. The chip may include a first substantially planar conduction layer with a first surface positioned adjacent to the second surface of the first isolation layer and a second surface opposite the first surface. The chip may include a second substantially planar isolation layer with a first surface positioned adjacent to the second surface of the first conduction layer and a second surface opposite the first surface. The chip may include a second conduction layer etched on the second surface of the second isolation layer. The second conduction layer may include an anode trace, a cathode trace, and an optical transmitter positioned on the cathode trace. The chip may include one or more vias through the second isolation layer electrically coupling the anode trace with the first conduction layer.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: August 16, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: Jianwei Mu, Frank Lei Ding, Tao Wu, Hongyu Deng, Maziar Amirkiai
  • Patent number: 11418009
    Abstract: A light-emitting device includes a vertical-cavity surface-emitting laser, the resonant cavity of which is transverse multimode supporting transverse modes having rotational symmetry of order two about a main optical axis, and an index-contrast grating including a plurality of pads. The pads include: a central pad, a plurality of peripheral pads, which are periodically arranged along one or more lines that are concentric with respect to the central pad, and which are arranged so that the grating has, with respect to the main optical axis, a rotational symmetry of uneven order higher than or equal to three.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 16, 2022
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Corrado Sciancalepore
  • Patent number: 11418008
    Abstract: Disclosed is a laser device. The laser device includes a substrate, a pump light source which is disposed on the substrate and provided with a light emitting layer configured to generate pump light, and an upper waveguide which is disposed above the pump light source in a first direction and provided with an upper resonator configured to allow laser light to be generated and resonate by using the pump light.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: August 16, 2022
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Jin Tae Kim
  • Patent number: 11417641
    Abstract: A light-emitting diode (LED) display panel includes a substrate, a driver circuit array on the substrate and including a plurality of pixel driver circuits arranged in an array, an LED array including a plurality of LED dies each being coupled to one of the pixel driver circuits, a micro lens array including a plurality of micro lenses each corresponding to and being arranged over at least one of the LED dies, and an optical spacer formed between the LED array and the micro lens array.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: August 16, 2022
    Assignee: JADE BIRD DISPLAY (SHANGHAI) LIMITED
    Inventors: Lei Zhang, Fang Ou, Qiming Li
  • Patent number: 11411137
    Abstract: A III-nitride optoelectronic device includes at least one n-type layer, an active region grown on or above the n-type layer, at least one p-type layer grown on or above the active region, and a tunnel junction grown on or above the p-type layer. A conductive oxide may be wafer bonded on or above the tunnel junction, wherein the conductive oxide comprises a transparent conductor and may contain light extraction features on its non-bonded face. The tunnel junction also enables monolithic incorporation of electrically-injected and optically-pumped III-nitride layers, wherein the optically-pumped III-nitride layers comprise high-indium-content III-nitride layers formed as quantum wells (QWs) that are grown on or above the tunnel junction. The optically-pumped high-indium-content III-nitride layers emit light at a longer wavelength than the electrically-injected III-nitride layers.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: August 9, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asad J. Mughal, Stacy J. Kowsz, Robert M. Farrell, Benjamin P. Yonkee, Erin C. Young, Christopher D. Pynn, Tal Margalith, James S. Speck, Shuji Nakamura, Steven P. DenBaars
  • Patent number: 11398713
    Abstract: An electro-absorption modulator of the invention is an electro-absorption modulator which is formed on an InP substrate and modulate incident light according to a voltage applied to that modulator, and which comprises a light absorbing layer for absorbing a portion of the incident light by using an electric field generated by the applied voltage; wherein the light absorbing layer is comprised of a ternary or more complex III-V semiconductor mixed crystal that does not contain Al but contains Bi.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 26, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinya Okuda, Takashi Nagira
  • Patent number: 11397000
    Abstract: A laser projection system having built-in safety systems is disclosed. Further disclosed is a method of operating a laser projection system such that safe operation is a factor only of meeting a threshold distance between the laser unit and an audience member. To accomplish safe operation at the threshold distance, the laser projection system is pre-calibrated to operate below maximum permitted exposure levels at the threshold distance. In this manner of operation, laser lighting can be accomplished by non-laser professionals without the complexity, external sensors, and need for calibration at the venue.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: July 26, 2022
    Assignee: LIGHTWAVE INTERNATIONAL, INC.
    Inventor: George Dodworth
  • Patent number: 11398715
    Abstract: A semiconductor light emitting device includes a substrate, and an array including three or more light emitting elements which are aligned above and along a main surface of a substrate and each emit light. The light emitting elements each include a clad layer of a first conductivity type, an active layer containing In, and a clad layer of a second conductivity type disposed above the substrate sequentially from the substrate. Among the light emitting elements, the compositional ratio of In in the active layer is smaller in the light emitting element located in a central area in an alignment direction than that in the light emitting elements located in both end areas in the alignment direction.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 26, 2022
    Assignee: PANASONIC HOLDINGS CORPORATION
    Inventors: Shinichiro Nozaki, Shinichi Takigawa
  • Patent number: 11394166
    Abstract: A laser irradiating device preferably includes: a reflector having a receiving space formed therein; a flash lamp inserted and mounted in the reflector to generate light; a laser rod for resonating light incident from the flash lamp to emit a laser; a capacitor for storing, for a predetermined time interval, voltage to be supplied to the flash lamp; a digital variable resistor unit for outputting different voltages according to configured resistance values; a voltage increasing unit for increasing voltage input from the digital variable resistor unit and supplying the increased voltage to the capacitor; a control unit which stores resistance values corresponding to laser irradiating levels and configures a resistance value corresponding to the configured laser irradiating level; and a trigger circuit unit turned on according to a control of the user to supply a charge voltage of the capacitor to the flash lamp.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: July 19, 2022
    Inventor: Jin Huh
  • Patent number: 11394168
    Abstract: A master oscillator configured as a seed laser for a laser optical module includes a reduced size, temperature controlled non-planar ring oscillator, a piezo-electric transducer mounted on the non-planar ring oscillator, a pump laser diode, and coupling optics configured to couple a laser output of the pump laser diode to an end face of the non-planar ring oscillator. The pump laser diode may operate as a single-mode pump.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: July 19, 2022
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Anthony Yu, Kenji Numata