Abstract: The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.
Type:
Grant
Filed:
September 28, 2012
Date of Patent:
May 5, 2015
Assignee:
UChicago Argonne, LLC
Inventors:
Peter J. Chupas, Karena W. Chapman, Charles A. Kurtz, Olaf J. Borkiewicz, Kamila Magdelena Wiaderek, Badri Shyam
Abstract: A radiation imaging apparatus includes a differential phase image producing section, a phase unwrapping section, a statistical operation section, and a correction processing section. The differential phase image producing section produces a differential phase image in which pixel values are wrapped into a predetermined range ?. The phase unwrapping section performs a phase unwrapping process to the differential phase image. The statistical operation section obtains a mode from statistical operation of pixel values in each subregion segmented in the unwrapped differential phase image. Each subregion is a unit in which error caused by the phase unwrapping process is to be corrected. The correction processing section calculates, for each pixel, an integer “n” which allows a difference ? between the mode and a pixel value of each pixel to satisfy n???/2??<n?+?/2, and subtracts n·? from each pixel value.
Abstract: An X-ray imaging apparatus includes an X-ray sensor configured to convert an X-ray to an image signal, a supporting member configured to support the X-ray sensor, and a casing having the X-ray sensor and the supporting member incorporated therein, wherein the casing includes a front casing configured to cover a front surface of the X-ray imaging apparatus where an X-ray enters, and a rear casing configured to cover a rear surface opposite the front surface of the X-ray imaging apparatus, and wherein a recess is formed toward the exterior of the casings at the connection portion of the front casing and the rear casing.
Abstract: A computer-implemented method for reducing image artifacts in X-ray image data includes dividing pixels of X-ray image data into a plurality of pixel value regions based on a pixel value of each pixel, wherein each pixel value region has a different range of pixel values. The method also includes generating calibrated X-ray image data for each pixel value region, wherein the respective calibrated X-ray image data for each pixel value region is generated using a different dose of radiation. Further, the method includes calculating a gain slope for each pixel value region based on the calibrated X-ray image data, and calculating a pixel gain correction for the pixels of the X-ray image data based on at least one of the calculated gain slopes.