Patents Examined by Jung H. Kim
  • Patent number: 9083359
    Abstract: A phase lock loop having a lock detector is provided. The lock detector is based on a replica charge pump and includes: a charge pump, a filter and a comparing circuit. The charge pump is arranged for providing an output according to a phase difference between an output signal and a reference signal. The filter is coupled to the charge pump, and is arranged for filtering the output of the charge pump to generate a filtered output voltage. The comparing circuit is coupled to the filter, and is arranged for comparing the filtered output voltage with a threshold setting to generate a lock indication signal to indicate whether the output signal is locked to the reference signal.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: July 14, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Uday Dasgupta, Chong Huang, Tieng Ying Choke
  • Patent number: 9013212
    Abstract: An output driver circuit includes first, second, third, and fourth transistors having a common current path, wherein a gate of the first transistor receives a first switching signal, a gate of the second transistor receives a first reference voltage, a gate of the third transistor receives a second reference voltage, and a gate of the fourth transistor receives a second switching signal, and wherein a first capacitor is coupled between the gate of the first transistor and the gate of the third transistor, a second capacitor is coupled between the gate of the second transistor and the gate of the fourth transistor, and an output signal is provided at a node coupling the second and third transistors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics International N.V.
    Inventor: Vinod Kumar
  • Patent number: 8970266
    Abstract: Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: March 3, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kosuke Yayama, Takashi Nakamura
  • Patent number: 8963625
    Abstract: A microcomputer includes a first switch coupled between a main power supply terminal and a power supply node, and a second switch coupled between an auxiliary power supply terminal and the power supply node. The microcomputer compares a voltage V1 of the main power supply terminal with a reference voltage VR1. When V1>VR1, the microcomputer turns on the first switch and turns off the second switch, and when V1<VR1, the microcomputer turns off the first switch, and turns on/off the second switch to gradually increase a voltage V3 of the power supply node. Thus, the operation of a clock generation circuit driven by V3 can be stable even when V3 is changed from V1 to V2.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: February 24, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichiro Miwa, Masahiro Kitamura
  • Patent number: 8963613
    Abstract: A current mirror circuit is described. The current mirror circuit includes a first transistor and a second transistor. The gates of the first transistor and the second transistor are coupled at a bias voltage. The current mirror circuit also includes an auxiliary transistor that is biased into weak inversion by receiving the bias voltage at a gate of the auxiliary transistor after being reduced by an offset voltage. The sources of the first transistor, second transistor and auxiliary transistor are coupled together. A primary current from the drain of the second transistor is combined with an auxiliary current from the drain of the auxiliary transistor to produce an output current.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: February 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Manas Behera, Yanping Ding, Junxiong Deng
  • Patent number: 8963600
    Abstract: An apparatus for delaying a plurality of chain-based time-to-digital circuits (TDCs). The apparatus includes a plurality of propagation path devices each connected to a respective one of the plurality of TDCs, each propagation path device delays a common start signal by a selectable amount based on a delay selection signal received by the propagation path device, and transmits the delayed start signal to the respective one of the TDCs.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 24, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Gregory J. Mann
  • Patent number: 8963585
    Abstract: An exemplary apparatus and method for using intelligent gate driver units with distributed intelligence to control antiparallel power modules or parallel-connected electrical switching devices like IGBTs is disclosed. The intelligent gate drive units use the intelligence to balance the currents of the switching devices, even in dynamic switching events. The intelligent gate driver units can use master-slave or daisy chain control structures and instantaneous or time integral differences of the currents of parallel-connected switching devices as control parameters. Instead of balancing the currents, temperature can also be balanced with the intelligent gate driver units.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 24, 2015
    Assignee: ABB Research Ltd
    Inventors: Yanick Lobsiger, Dominik Bortis, Johann Walter Kolar, Matti Laitinen
  • Patent number: 8901979
    Abstract: In accordance with an embodiment, a description is given of a storage circuit including an input stage configured to provide a value to be stored, a storage stage configured to store the value to be stored, an output stage configured to output a value stored by the storage circuit, and a control circuit, wherein the control circuit is configured to receive a signal from the output stage, which signal indicates the charge state of the output stage, and, if the charge state of the output stage is equal to a predefined precharge state, to output an activation signal to the storage stage, and wherein the storage stage is configured to store the value to be stored, provided by the input stage, in reaction to the activation signal.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies AG
    Inventor: Thomas Kuenemund
  • Patent number: 8901982
    Abstract: In an approach for calibrating a delay line having a plurality of taps, a first clock signal is input to the delay line. A second clock signal is input to a reference circuit having a plurality of taps. In response to determining that output signals of selected taps of the delay line and reference circuit do not align, a next tap of the reference circuit is selected, to determine whether or not the output signals align. In response to determining that the output signals align, reference tap data indicative of the current reference tap is stored in association with a delay tap number of the current delay tap. A next tap of the delay line is selected to determine whether or not the output signals align.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: December 2, 2014
    Assignee: Xilinx, Inc.
    Inventor: Austin S. Tavares
  • Patent number: 8901983
    Abstract: The temperature compensated timing signal generator comprises a crystal oscillator that generates a reference time signal, and a divider circuit that receives the reference time signal as input and outputs a coarse time unit signal, the coarse time unit signal having an actual frequency deviating from a desired frequency as a function of temperature of the crystal oscillator. The signal generator also includes a high frequency oscillator configured to generate an interpolation signal having a frequency greater than the frequency of the crystal oscillator. A finite state machine computes a deviation compensating signal as a function of temperature, the signal comprises an integer part representative of an integer number of pulses to be inhibited or injected in the divider circuit and a fractional part representative of how much the output of a new time unit signal pulse should further be delayed to compensate for any remaining deviation.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Micro Crystal AG
    Inventors: David Ruffieux, Nicola Scolari
  • Patent number: 8896370
    Abstract: A voltage regulator bypass circuit to control bypass of a voltage regulator of an integrated circuit device, the voltage regulator bypass circuit including a first voltage detector, a second voltage detector, and circuit. The first voltage detector to detect that a core circuitry voltage level is above a first threshold and to assert a first detect signal at an output in response to the detection. The second voltage detector to detect that an unregulated supply voltage is above a second threshold and to assert a second detect signal at an output in response to the detection. The circuit having a first input coupled to the output of the first voltage detector and a second input coupled to the output of the second voltage detector, the circuit to bypass the voltage regulator in response the output of the latch being cleared.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: November 25, 2014
    Assignees: Freescale Semiconductor, Inc., STMicroelectronics SRL, STMicroelectronics Private Ltd.
    Inventors: Stefano Pietri, Chris C. Dao, Juxiang Ren, Nicolas Grossier, V Srinivasan
  • Patent number: 8896359
    Abstract: The temperature compensated timing signal generator comprises a crystal oscillator that generates a reference time signal, and a divider circuit that receives the reference time signal as input and outputs a coarse time unit signal, the coarse time unit signal having an actual frequency deviating from a desired frequency as a function of temperature of the crystal oscillator. The signal generator also includes a high frequency oscillator that generates an interpolation signal having a frequency greater than the frequency of the crystal oscillator. A finite state machine computes a deviation compensating signal as a function of the temperature signal, the signal comprises an integer part representative of an integer number of pulses to be inhibited or injected in the divider circuit and a fractional part representative of how much the output of a new time unit signal pulse should further be delayed to compensate for any remaining deviation.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 25, 2014
    Assignee: Micro Crystal AG
    Inventors: David Ruffieux, Nicola Scolari
  • Patent number: 8890601
    Abstract: A multi-terminal output with a common mode connection includes an output having a first terminal and a second terminal and having a common mode connection between the first terminal and the second terminal. A bulk connection of a transistor is coupled to the common mode connection. A first set of control signals and a second set of control signals are generated. Each of the first set of control signals has a first rail voltage level associated with a first power domain. The second set of control signals is generated from the first set of control signals. Each of the second set of control signals has a second rail voltage level that is associated with a second power domain. The second power domain is associated with a common mode voltage of outputs of an output driver.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 18, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Miao Li, Xiaohua Kong, Nam V. Dang
  • Patent number: 8890596
    Abstract: A clock signal generating apparatus includes a first frequency generating circuit, a second frequency generating circuit, and an output circuit. The first frequency generating circuit is arranged to generate a first clock signal having a first oscillation frequency. The second frequency generating circuit is arranged to generate a second clock signal having a second oscillation frequency. The output circuit is arranged to receive the first and second clock signals. The output circuit is able to output one of the first and second clock signals as an output clock signal according to an oscillation frequency control setting provided by an external bounding pad included within the clock signal generating apparatus.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 18, 2014
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventor: Xiao-Fei Chen
  • Patent number: 8884656
    Abstract: A zero-crossing detection circuit includes a comparator and circuitry. The comparator produces an output signal that is indicative of zero-crossing events in an input Alternating Current (AC) waveform. The circuitry may be configured to feed the comparator with first and second rails voltages, and to progressively increase the rails voltages during time intervals derived from the input AC waveform, so as to feed the comparator with target values of the rails voltages in time-proximity to the zero-crossing events. The circuitry may be configured to compensate for an error in detecting the zero crossing events caused by differences in amplitude of the input AC waveform, by correcting the input AC waveform provided to the comparator. The circuitry may be configured to activate the comparator during time intervals preceding respective anticipated times of the zero-crossing events, and to deactivate the comparator at least once during time periods other than the time intervals.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 11, 2014
    Assignee: Sigma Designs Israel S.D.I. Ltd.
    Inventor: Danny Braunshtein
  • Patent number: 8884653
    Abstract: Disclosed is a comparator including a switching element, a differential pair, and a positive feedback part, the positive feedback part including a first CMOS inverter and a second CMOS inverter, the first CMOS inverter including a first element for providing a potential difference between a first PMOS transistor and a first NMOS transistor, the second CMOS inverter including a second element for providing a potential difference between a second PMOS transistor and a second NMOS transistor, a higher potential side of the first element being connected to a gate of the second NMOS transistor, a lower potential side of the first element being connected to a gate of the second PMOS transistor, a higher potential side of the second element being connected to a gate of the first NMOS transistor, and a lower potential side of the second element being connected to a gate of the first PMOS transistor.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Fumihiro Inoue
  • Patent number: 8860504
    Abstract: An apparatus for measuring a biological signal of a body, the apparatus including; at least three interfaces which obtain signals from the body, a signal application unit which applies a signal having a frequency which is higher than one of a frequency of interest of the biological signal to one of a first interface from among the at least three interfaces, and one of a plurality of internal elements of the apparatus, a feedback signal generation unit which generates a feedback signal from component signals generated due to the applied signal, wherein the feedback signal generation unit generates the feedback signal using a signal obtained from at least one of a second interface and a third interface from among the at least three interfaces and an input control unit which receives the generated feedback signal and controls a signal input from at least one of the second interface and third interface to an amplifier.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-pal Kim
  • Patent number: 8860500
    Abstract: An apparatus for transferring charge has a first charge pump path with a plurality of stages having first capacitors, and a second charge pump path, also with a plurality of stage having second capacitors, in parallel with the first charge pump path. The first and second charge pump paths are coupled to share a common output node. The apparatus also has a timing circuit coupled with the first and second charge pump paths. Among other things, the timing circuit is configured to cause at least one of the first capacitors to periodically charge at least one of the second capacitors.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: October 14, 2014
    Assignee: Analog Devices Technology
    Inventors: Linus Sheng, Christopher W. Mangelsdorf
  • Patent number: 8854119
    Abstract: A circuit includes a charge pump, a first level shifter, a second level shifter, a voltage follower and a current mirror. The charge pump is configured to generate a voltage difference between the input node and the output node. The first level shifter is coupled to the charge pump output and configured to apply a first voltage variation to the charge pump output in response to a bias current. The second level shifter is coupled to the input node and configured to apply a second voltage variation to the charge pump input. The voltage follower is configured to equalize outputs from the first and second level shifters and provide a difference current which is multiplied by the current multiplier to generate a charging current applied to the charge pump.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: October 7, 2014
    Assignee: STMicroelectronics R&D (Shanghai) Co. Ltd.
    Inventors: Ming Jiang, Jackson Ding
  • Patent number: 8847641
    Abstract: A phase detection range is enabled to be expanded to an arbitrary number of times of a cycle of a reference clock, and in the case of application to a DLL circuit, an operation cycle is enabled to be freely selected. A phase comparison device includes a divider that generates a division clock obtained by receiving a reference clock and dividing it by two; an inverter that inverts a phase of the division clock to generate a division inverted clock; a DFF circuit that synchronizes the division inverted clock with a delay clock to generate a synchronized clock; a DFF circuit that synchronizes the clock with the feedback clock to generate a final synchronized clock; and a phase comparator that receives the division clock and the final synchronized clock to compare phases of the division clock and the final synchronized clock.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: September 30, 2014
    Assignee: MegaChips Corporation
    Inventor: Shoichiro Kashiwakura