Patents Examined by Kallambella Vijayakumar
  • Patent number: 9112106
    Abstract: A premixed powdery precursor composition suitable as precursor material for obtaining a coating solution for the preparation of, for instance, thin film superconductors based on YBCO 1:2:3 via a coating technique, wherein the powdery precursor composition comprises a mixture of suitable salts of the constituent elements, in particular salts of trifluoroacetate and acetate.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 18, 2015
    Assignee: NEXANS
    Inventors: Joachim Bock, Andre Wolf, Dirk Isfort
  • Patent number: 9093199
    Abstract: A method for making superconducting wire is provided. A number of superconducting preforms is formed on a carrier. A carbon nanotube layer is placed spaced from and opposite to the carrier. The superconducting preforms are moved from the carrier onto the carbon nanotube layer by applying an electric field between the carbon nanotube layer and the carrier. A composite wire is made by treating the carbon nanotube layer with the superconducting preforms thereon. Finally, the composite wire is sintered.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: July 28, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xiao-Yang Lin, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 9070495
    Abstract: Impurities in an oxide superconducting layer or at a surface of the oxide superconducting layer at an intermediate layer side are reduced. A superconducting wire rod has a configuration that includes a metal substrate 10; an intermediate layer 20 formed on the metal substrate 10 and containing a rare-earth element that reacts with Ba; a reaction suppressing layer 28 formed on the intermediate layer 20 and mainly containing LaMnO3+?1, wherein ?1 represents an amount of non-stoichiometric oxygen; and an oxide superconducting layer 30 formed on the reaction suppressing layer 28 and mainly containing an oxide superconductor containing Ba.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: June 30, 2015
    Assignee: FUKUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Eiji Kojima, Yuko Hayase
  • Patent number: 9037203
    Abstract: A composite barrier-type Nb3Al superconducting multifilament wire material comprises Nb barrier filaments, Ta barrier filaments, Nb bulk dummy filaments, and a Nb or Ta covering. In the composite barrier-type Nb3Al superconducting multifilament wire material, the Nb barrier filaments and Ta barrier filaments are disposed in the wire material so that the Nb barrier filaments are concentrated in a filament region near a core formed from the Nb bulk dummy filaments and only the Ta barrier filaments are disposed or the Nb barrier filaments are dispersed in the Ta barrier filaments in an outer layer portion formed from a region outside the Nb barrier filaments, excluding the Nb or Ta covering.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 19, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Nobuya Banno, Takao Takeuchi
  • Patent number: 9031625
    Abstract: A superconducting wire includes a linear superconductor and a carbon nanotube structure. The carbon nanotube structure is located on the linear superconductor. The carbon nanotube structure includes a number of carbon nanotubes joined end to end by van der Waals attractive force between and arranged helically along an axial direction of the linear superconductor.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: May 12, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Yang Lin, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 9031626
    Abstract: A superconducting wire includes a superconductor layer and a carbon nanotube layer. The superconductor layer and the carbon nanotube layer are stacked on each other and rolled to form the superconducting wire. Thus, the superconductor layer and the carbon nanotube layer are simultaneously rolled and alternately stacked on each other.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: May 12, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Yang Lin, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 9023764
    Abstract: According to one embodiment, an oxide superconductor includes an oriented superconductor layer and an oxide layer. The oriented superconductor layer contains fluorine at 2.0×1016-5.0×1019 atoms/cc and carbon at 1.0×1018-5.0×1020 atoms/cc. The superconductor layer contains in 90% or more a portion oriented along c-axis with an in-plane orientation degree (??) of 10 degrees or less, and contains a LnBa2Cu3O7-x superconductor material (Ln being yttrium or a lanthanoid except cerium, praseodymium, promethium, and lutetium). The oxide layer is provided in contact with a lower surface of the superconductor layer and oriented with an in-plane orientation degree (??) of 10 degrees or less with respect to one crystal axis of the superconductor layer. Area of a portion of the lower surface of the superconductor layer in contact with the oxide layer is 0.3 or less of area of a region directly below the superconductor layer.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Araki, Mariko Hayashi, Ko Yamada, Hiroyuki Fuke
  • Patent number: 9014771
    Abstract: A layered superconductor device includes multiple layers of a single crystal superconducting material having intermittent layers of superconducting material dispersed in a pattern with a second material such that each layer of the multiple layers a single crystal superconducting material are interconnected via superconducting material, allowing for a continuous current path, and a thickness of the superconducting material never exceeds a first predetermined thickness.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: April 21, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas O. Jones, III
  • Patent number: 9011723
    Abstract: In a method for treating alternative, carbon-containing, low-caloric waste materials for use in furnace systems, in particular rotary tubular kilns for the production of clinker, the carbon-containing, alternative fuels are subjected to high-temperature gasification under anoxic conditions at temperatures above 1000° C., wherein water, water vapor or CO2 is injected to ensure a reaction forming CO and H2. The waste heat from a clinker cooler is used for the high-temperature gasification.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 21, 2015
    Assignee: Holcim Technology Ltd.
    Inventors: Frank Ernst, Albert Obrist
  • Patent number: 9012366
    Abstract: A device for the high pressure densification of superconducting wire from compacted superconductor material or superconductor precursor powder particles, has four hard metal anvils (5, 6, 7, 8) with a total length (L2) parallel to the superconducting wire, the hard metal anvils borne in external independent pressure blocks (9, 10, 11), which are in turn either fixed or connected to high pressure devices, preferably hydraulic presses. At least one of the hard metal anvils is a free moving anvil (6) having clearances of at least 0.01 mm up to 0.2 mm towards the neighboring hard metal anvils (5, 8), so that no wall friction occurs between the free moving anvil and the neighboring anvils. This allows for high critical current densities Jc at reduced pressure applied to the hard metal anvils.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 21, 2015
    Assignee: Bruker BioSpin AG
    Inventors: René Flükiger, Florin Buta, Carmine Senatore
  • Patent number: 9005563
    Abstract: Silicon wafers having an oxygen concentration of 5·1017 to 7.5·1017 cm?3 have the following BMD densities after the following thermal processes, carried out alternatively: a BMD density of at most 1·108 cm?3 after a treatment for three hours at 780° C. and subsequently for 16 hours at 1000° C., and a BMD density of at least 1·109 cm?3 after heating of the silicon wafer at a heating rate of 1 K/min from a start temperature of 500° C. to a target temperature of 1000° C. and subsequent holding at 1000° C. for 16 hours. The wafers are prepared by a method of irradiation of a heated wafer with flashlamp which delivers energy which is from 50 to 100% of the energy density necessary for melting the wafer surface.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 14, 2015
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Gudrun Kissinger, Dawid Kot
  • Patent number: 8999200
    Abstract: A polymeric composite comprises a polymeric resin; an electrically conductive filler; and a polycyclic aromatic compound, in an amount effect to increase the electrical conductivity of the polymeric composition relative to the same composition without the polycyclic aromatic compound. The addition of the polycyclic aromatic compound in addition to a conductive filler imparts improved electrical and mechanical properties to the compositions.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: April 7, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Sumanda Bandyopadhyay, Darren Clark, Soumyadeb Ghosh
  • Patent number: 8992799
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 31, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8993064
    Abstract: Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 31, 2015
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Hironao Okayama, Kouji Nanbu, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuhiko Hayashi, Kazuya Ohmatsu
  • Patent number: 8992871
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Patent number: 8989829
    Abstract: A layered superconductor device includes multiple layers of a single crystal superconducting material having intermittent layers of superconducting material dispersed in a pattern with a second material such that each layer of the multiple layers a single crystal superconducting material are interconnected via superconducting material, allowing for a continuous current path, and a thickness of the superconducting material never exceeds a first predetermined thickness.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 24, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas O. Jones, III
  • Patent number: 8986580
    Abstract: Disclosed are: a visible-light-responsive titanium oxide microparticle dispersion comprising an aqueous dispersion medium and titanium oxide microparticles dispersed therein, and a peroxotitanium component, an iron component and/or a copper component and a tin component, wherein the content of the peroxotitanium component is 0.1 to 20 mass % relative to the titanium oxide content; and a process for producing a visible-light-responsive titanium oxide microparticle dispersion, comprising (1) producing peroxotitanic acid containing a tin compound from a raw material titanium compound, a tin compound and hydrogen peroxide, (2) heating an aqueous solution of peroxotitanic acid containing the tin compound to 80 to 250° C.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 24, 2015
    Assignee: Shin-etsu Chemical Co., Ltd.
    Inventors: Manabu Furudate, Tomohiro Inoue, Yoshitsugu Eguchi, Tadashi Amano
  • Patent number: 8980797
    Abstract: A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Yuko Hayase, Eiji Kojima
  • Patent number: 8980135
    Abstract: An object of the present invention is to provide an infrared-shielding nanoparticle dispersion that has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded; an infrared-shielding body manufactured using the infrared-shielding nanoparticle dispersion; a method for manufacturing infrared-shielding nanoparticles that are used in the infrared-shielding nanoparticle dispersion; and infrared-shielding nanoparticles manufactured using the method for manufacturing infrared-shielding nanoparticles.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 17, 2015
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiromitsu Takeda, Kenji Adachi
  • Patent number: 8980136
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 17, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw