Patents Examined by Karen B Addison
  • Patent number: 10855206
    Abstract: Disclosed is a piezoelectric rotary drive for a shaft, which includes a piezoelectric actuator, a deformable frame that can be coupled with a coupling section to the shaft in a force-fit manner in order to accomplish a stick-slip drive, and a loading device which can apply a preloading force to the coupling section and/or the actuator and/or the shaft. To facilitate production and assembly, the loading device can be a leaf spring which in the relaxed state extends substantially in a plane, such as along a straight line.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: December 1, 2020
    Assignee: PHYSIK INSTRUMENTE (PI) GMBH & CO. KG
    Inventors: Reinhard Hübner, Hansjörg Luckert
  • Patent number: 10825982
    Abstract: A piezoelectric Micro-Electro-Mechanical Systems (MEMS) device comprising: a physical element; and a piezoelectric sensor element, with the physical element positioned in proximity to a moving portion of the piezoelectric sensor element, and with proximity of the physical element to the moving portion reducing a probability of breakage of the piezoelectric sensor element by limiting an excursion of the piezoelectric sensor element, relative to a probability of breakage of the piezoelectric sensor element in another piezoelectric MEMS device without the physical element.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: November 3, 2020
    Assignee: Vesper Technologies Inc.
    Inventors: Robert J. Littrell, Karl Grosh, Craig Core, Yu Hui, Wang Kyung Sung
  • Patent number: 10825979
    Abstract: A piezoelectric element includes: a substrate; a first electrode which is disposed on the substrate; a piezoelectric body layer which is disposed on the first electrode, which has a plurality of layers configured to contain a piezoelectric body material, and in which the total thickness of the plurality of layers is within a range of 1.6 ?m to 10 ?m; and an intermediate layer which is disposed on an interlayer of the piezoelectric body layer, and which is configured to contain titanium.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 3, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Tomokazu Kobayashi, Mitsumi Kishida, Tsutomu Asakawa
  • Patent number: 10819313
    Abstract: There are disclosed various apparatuses and methods for tuning a resonance frequency. In some embodiments there is provided an apparatus (200) comprising at least one input electrode (202, 204) for receiving radio frequency signals; a graphene foil (210) for converting at least part of the radio frequency signals into mechanical energy; at least one dielectric support element (212) to support the graphene foil (210) and to space apart the at least one input electrode (202, 204) and the graphene foil (210). The graphene foil (210) has piezoelectric properties. In some embodiments there is provided a method comprising receiving radio frequency signals by at least one input electrode (202, 204) of an apparatus (200); providing a bias voltage to the apparatus (200) for tuning the resonance frequency of the apparatus (200); and converting at least part of the radio frequency signals into mechanical energy by a graphene foil (210) having piezoelectric properties.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 27, 2020
    Assignee: Lyten, Inc.
    Inventor: Martti Voutilainen
  • Patent number: 10818834
    Abstract: A mounting structure includes a first substrate which has a first surface on which a functional element is provided, a second substrate that has a second surface facing the first surface, a wiring portion that is provided at a position which is different from a position of the functional element on the first surface, has a third surface facing the second surface, and is electrically connected to the functional element, and a conduction portion that is provided on the second surface, protrudes toward the first surface, and is connected to the third surface so as to be electrically connected to the functional element, in which an area of the third surface is larger than an area of a first end section of the wiring portion on the first substrate side in a plan view which is viewed from a thickness direction of the first substrate and the second substrate.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 27, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Hironori Suzuki, Hiroshi Matsuda, Koji Ohashi
  • Patent number: 10802588
    Abstract: Methods, systems, and apparatuses for micro actuators are presented. In some embodiments, a micro actuator can comprise a substrate coupled to an actuation member. A corrugating portion of the substrate in a first state can be uncontracted to form a substantially planar surface and in a second state can be contracted along a dimension parallel to the planar surface. The actuation member can be at least partially rigid. The micro actuator can be configured to move the actuation member relative to the corrugating portion upon a change in state of the corrugating portion. At least a layer of the substrate can be unitary and the actuation member can include at least a portion of the layer. The substrate can comprise a conducting polymer film.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: October 13, 2020
    Assignee: QUALCOMM Incorporated
    Inventor: Russel Allyn Martin
  • Patent number: 10804878
    Abstract: There are provided an acoustic resonator module, and a method of manufacturing the same. An acoustic resonator module includes a resonating part disposed on a substrate and an inductor electrically connected to the resonating part, and having at least a portion disposed to be spaced apart from the substrate.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: October 13, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: June Kyoo Lee, Chul Soo Kim, Won Kyu Jeung
  • Patent number: 10801373
    Abstract: A lead screw actuator device includes a base configured to support a plurality of actuators. A first bridge is supported by one of the plurality of actuators and a second bridge is supported by another one of the plurality of actuators. A nut is supported by the first bridge and the second bridge and is rotatably coupled to a screw with a sliding contact friction between the screw and the nut. The plurality of actuators generate small movements of the first bridge, the second bridge, and the nut that produce relative rotation between the nut and the screw. A method of making a lead screw actuator device is also disclosed.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: October 13, 2020
    Assignee: NEW SCALE TECHNOLOGIES, INC.
    Inventor: David A. Henderson
  • Patent number: 10790797
    Abstract: An acoustic resonator includes: a substrate; a resonance part mounted on the substrate and including resonance part electrodes, the resonance part being configured to generate acoustic waves; a cavity disposed between the resonance part and the substrate; a frame part disposed on at least one electrode among the resonance part electrodes, and being configured to reflect the acoustic waves; and a connection electrode configured to connect the at least one electrode to an external electrode, and having a thickness less than a thickness of the at least one electrode.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: September 29, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Won Han, Moon Chul Lee, Jae Chang Lee, Sang Uk Son, Tae Hun Lee
  • Patent number: 10790798
    Abstract: An acoustic resonator includes a substrate having via holes provided therein and having a membrane structure formed on a first surface of the substrate, and a cap accommodating the membrane structure and bonded to the substrate. The cap includes a support block in contact with the membrane structure.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: September 29, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jeong Suong Yang, Sang Hyun Yi, Ho Joon Park, Yeong Gyu Lee
  • Patent number: 10784434
    Abstract: A piezoelectric element includes a plate-shaped piezoelectric body having one principal face and the other principal face which are opposite to each other; and a first surface electrode mounted on the one principal face and a second surface electrode mounted on the other principal face, at least one of the first surface electrode and the second surface electrode including a center part and a peripheral part which is greater in thickness than the center part, the peripheral part having a thicker region and a thinner region which is thinner than the thicker region.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: September 22, 2020
    Assignee: KYOCERA Corporation
    Inventor: Hidekazu Sanada
  • Patent number: 10775583
    Abstract: A value obtained by adding an output of a speed feedforward calculation unit that uses a speed calculated from a change over time in an instruction value to a stage downstream from a feedback calculation unit that uses a positional deviation is used as a control amount, and at least one of an elliptic ratio of elliptical motion and a driving direction is controlled.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 15, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Jun Sumioka
  • Patent number: 10772603
    Abstract: An ultrasound probe comprising a housing, a transducer assembly operable to transmit ultrasonic energy towards a zone of the probe adapted to be acoustically coupled to an object or area of interest, a cooling system comprising a heat transfer device arranged to transfer heat generated by the transducer assembly to one or more regions or areas located outside such transducer assembly. The heat transfer device comprises graphene.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: September 15, 2020
    Assignee: Esaote S.p.A.
    Inventors: Lorenzo Spicci, Paolo Palchetti, Francesca Gambineri
  • Patent number: 10763818
    Abstract: An acoustic wave device includes: a piezoelectric substrate; a comb-shaped electrode located on the piezoelectric substrate; a wiring layer located on the piezoelectric substrate and electrically connected with the comb-shaped electrode; a first insulating film located on the piezoelectric substrate, the first insulating film covering the comb-shaped electrode, having an aperture on the wiring layer, and being thicker than the comb-shaped electrode; a second insulating film covering an upper surface of the first insulating film and at least a part of a side surface of the first insulating film in the aperture and having a higher moisture resistance than the first insulating film; and a pad being in contact with the wiring layer exposed by the aperture.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 1, 2020
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Takeshi Sakashita, Jun Tsutsumi
  • Patent number: 10763821
    Abstract: A crystal resonator vibrates in a thickness-shear mode. The crystal resonator includes excitation electrodes being disposed on a front surface and a back surface of a crystal element. The excitation electrodes are disposed on the crystal element to have a positional relationship, where a displacement distribution at an edge of the excitation electrode on the front surface is identical to a displacement distribution at an edge of the excitation electrode on the back surface.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: September 1, 2020
    Assignee: NIHON DEMPA KOGYO CO., LTD.
    Inventors: Shigetaka Kaga, Yoshiro Teshima, Kazuhiro Hirota
  • Patent number: 10749098
    Abstract: The present disclosure relates to an electronic element package and a method of manufacturing the same. The electronic element package includes a substrate, an element disposed on the substrate, a cap enclosing the element, a bonding portion bonding the substrate to the cap, and blocking portions disposed on both sides of the bonding portion.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: August 18, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Pil Joong Kang, Kwang Su Kim, Jeong Il Lee, Jong Hyeong Song, Hyun Kee Lee, Yun Sung Kang, Seung Joo Shin, Jeong Suong Yang
  • Patent number: 10741747
    Abstract: The present invention relates to a zinc oxide-based piezoelectric device, utilizable both as a sensor and as an actuator. More in particular, the present invention relates to a piezoelectric device (1, 101) comprising at least two carbon fibre crossed yarns (2a, 2b; 102a, 102b), at the intersection of which a zinc oxide layer (3, 103) in nanorod form is arranged, wherein an end (4a, 4b) of each of said yarns (2a, 2b; 102a, 102b) is connected to an operative unit (5).
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: August 11, 2020
    Assignees: Bercella S.r.l., CNR Consiglio Nazionale delle Ricerche
    Inventors: Davide Calestani, Nicola Coppede, Maurizio Culiolo, Davide Delmonte, Marco Lani, Andrea Zappetini, Laura Marchini, Rocco Bercella
  • Patent number: 10722918
    Abstract: Methods, systems, computer-readable media, and apparatuses for high density Micro-Electro-Mechanical Systems (MEMS) are presented. In some embodiments, a method for manufacturing a micro-electro-mechanical device on a substrate can comprise etching a release via through a layer of the device. The method can further comprise creating a cavity in the layer of the device using the release via as a conduit to access the desired location of the cavity, the cavity enabling movement of a transducer of the device. The method can then comprise depositing low impedance, electrically conductive material into the release via to form an electrically conductive path through the layer. Finally, the method can comprise electrically coupling the electrically conductive material to an electrode of the transducer.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 28, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Donald William Kidwell, Jr., Ravindra Shenoy, Jon Lasiter
  • Patent number: 10727394
    Abstract: A system that may be used for energy harvesting includes a flexible beam secured between a first support and a second support. The supports are spaced apart at a distance less than a length of the flexible beam such that the beam is buckled. Responsive to external vibrations the flexible beam switches between a first position and a second position. A magnetic proof mass is coupled to the flexible beam at the beam's midpoint. At least one permanent magnet is positioned proximate to the magnetic proof mass and has the same polarity. The permanent magnet is positioned to expose the magnetic proof mass to a repulsive force when the magnetic proof mass is located at both the first position and the second position. Piezoelectric transducers are located above and below the first and second positions of the flexible beam to harvest energy.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 28, 2020
    Assignee: United States of America as represented by Secretary of the Navy
    Inventors: Adi R. Bulsara, Bruno Ando, Salvatore Baglio, Vincenzo Marletta, Antonio Pistorio
  • Patent number: 10727764
    Abstract: A piezoelectric generator is specified, comprising a deformation body, which spans a projection surface and is embodied with a setpoint pressure surface situated opposite the projection surface, wherein the projection surface can be converted from a smaller projection surface when not loaded under pressure into a larger projection surface when pressure is applied to the setpoint pressure surface substantially perpendicular to the projection surface, and a spring effect is provided which counteracts an application of pressure to the setpoint pressure surface, wherein an electromechanical transducer element comprising a piezoelectric material wholly or partly spans the projection surface, such that the transducer element is embodied in an expandable fashion upon pressure being applied to the deformation body, and electrical microenergy can be generated by means of the piezoelectric material.
    Type: Grant
    Filed: February 13, 2016
    Date of Patent: July 28, 2020
    Inventors: Enrico Bischur, Norbert Schwesinger, Sandy Zaehringer