Patents Examined by Karen B Addison
  • Patent number: 10389332
    Abstract: A micro-electrical-mechanical system (MEMS) guided wave device includes a single crystal piezoelectric layer and at least one guided wave confinement structure configured to confine a laterally excited wave in the single crystal piezoelectric layer. A bonded interface is provided between the single crystal piezoelectric layer and at least one underlying layer. A multi-frequency device includes first and second groups of electrodes arranged on or in different thickness regions of a single crystal piezoelectric layer, with at least one guided wave confinement structure. Segments of a segmented piezoelectric layer and a segmented layer of electrodes are substantially registered in a device including at least one guided wave confinement structure.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: August 20, 2019
    Assignee: Qorvo US, Inc.
    Inventor: Kushal Bhattacharjee
  • Patent number: 10382008
    Abstract: Disclosed is a surface acoustic wave device including a piezoelectric substrate, first and second bus bars formed on the piezoelectric substrate to be opposite each other, a plurality of first inter-digital electrodes that are electrically connected to the first bus bar and extend from the first bus bar toward the second bus bar, and a plurality of second inter-digital electrodes that are electrically connected to the second bus bar and extend from the second bus bar toward the first bus bar, in which the first inter-digital electrodes and the second inter-digital electrodes are alternately arranged.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: August 13, 2019
    Assignee: WISOL CO., LTD.
    Inventors: Ah Sung Kim, Chul Hwa Lee
  • Patent number: 10370241
    Abstract: A physical quantity detection device includes a semiconductor element and a physical quantity detection vibrator element a portion of which overlaps the semiconductor element in a plan view of the semiconductor element. The physical quantity detection vibrator element includes a drive portion including a drive electrode, and a detection portion. At least a partial region of the drive electrode does not overlap the semiconductor element in the plan view of the semiconductor element.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: August 6, 2019
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Shinya Aoki
  • Patent number: 10374573
    Abstract: A micro-electrical-mechanical system (MEMS) guided wave device includes a single crystal piezoelectric layer and at least one guided wave confinement structure configured to confine a laterally excited wave in the single crystal piezoelectric layer. A bonded interface is provided between the single crystal piezoelectric layer and at least one underlying layer. A multi-frequency device includes first and second groups of electrodes arranged on or in different thickness regions of a single crystal piezoelectric layer, with at least one guided wave confinement structure. Segments of a segmented piezoelectric layer and a segmented layer of electrodes are substantially registered in a device including at least one guided wave confinement structure.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: August 6, 2019
    Assignee: Qorvo US, Inc.
    Inventor: Kushal Bhattacharjee
  • Patent number: 10347817
    Abstract: A lead-free piezoelectric ceramic composition including an alkali niobate/tantalate perovskite oxide main phase having piezoelectric properties and a different metal oxide. The mole ratio (Na/K) between Na (sodium) and K (potassium) in the main phase is 0.40<(Na/K)<3.0. The main phase has a crystal structure in which (i) first spots corresponding to a primitive lattice period and (ii) second spots corresponding to the lattice period two times the primitive lattice period and being weaker than the first spots appear in an electron beam diffraction image entering from the <100> direction with the main phase represented as a pseudo-cubic crystal system. Also, the area ratio of a crystal phase reflecting the second spots in the main phase is 33% or less, and the maximum grain size of crystals reflecting the second spots in the main phase is 25 nm or less.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: July 9, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Hisashi Kozuka, Hideto Yamada, Takayuki Matsuoka, Kazuaki Kitamura, Masato Yamazaki, Toshiaki Kurahashi, Takashi Kasashima, Yasuyuki Okimura, Kazushige Ohbayashi
  • Patent number: 10348269
    Abstract: A micro-electrical-mechanical system (MEMS) guided wave device includes a piezoelectric layer including multiple thinned regions of different thicknesses each bounding in part a different recess, different groups of electrodes on or adjacent to different thinned regions and arranged for transduction of lateral acoustic waves of different wavelengths in the different thinned regions, and at least one bonded interface between the piezoelectric layer and a substrate. Optionally, a buffer layer may be intermediately bonded between the piezoelectric layer and the substrate. Methods of producing such devices include locally thinning a piezoelectric layer to define multiple recesses, bonding the piezoelectric layer on or over a substrate layer to cause the recesses to be bounded in part by either the substrate or an optional buffer layer, and defining multiple groups of electrodes on or over the different thinned regions.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 9, 2019
    Assignee: Qorvo US, Inc.
    Inventor: Kushal Bhattacharjee
  • Patent number: 10340441
    Abstract: A lead-free piezoelectric ceramic composition including an alkali niobate/tantalate perovskite oxide main phase having piezoelectric properties and a different metal oxide subphase. The mole ratio (Na/K) between Na (sodium) and K (potassium) in the main phase assumes a value in a range represented by 0.40<(Na/K)<3.0. The main phase has a crystal structure in which (i) first spots corresponding to a primitive lattice period and (ii) second spots corresponding to the lattice period two times the primitive lattice period and being weaker than the first spots appear in an electron beam diffraction image entering from the <100> direction with the main phase represented as a pseudo-cubic crystal system.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: July 2, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Hisashi Kozuka, Hideto Yamada, Takayuki Matsuoka, Kazuaki Kitamura, Masato Yamazaki, Toshiaki Kurahashi, Takashi Kasashima, Yasuyuki Okimura, Kazushige Ohbayashi
  • Patent number: 10340440
    Abstract: An electronic device includes a base material, a first metal film disposed on the base material and containing nitrogen and chromium, and a second metal film disposed on the first metal film and containing gold. In the first metal film, the number of nitrogen atoms may be between 20% to 100% of the number of chromium atoms. Further, the distribution of nitrogen atoms in the first metal film is larger in a third region sandwiched between a first region on the base material side of the first metal film and a second region on the second metal film side than in the first region and in the second region.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 2, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tetsuya Otsuki, Shiro Murakami, Tomohiro Arai, Mitsuhiro Wada, Hiroshi Ito, Manabu Shiraki, Manabu Kondo, Muneyoshi Hama
  • Patent number: 10327736
    Abstract: An ultrasound transducer array for coupling sonic energy into a liquid includes a plurality of transducer pairs, where each transducer pair includes an inverted ultrasound transducer and a non-inverted ultrasound transducer electrically coupled in series. A method for coupling sonic energy into a liquid includes (a) driving a first transducer pair with a first electrical signal, where the first transducer pair includes a first inverted ultrasound transducer and a first non-inverted ultrasound transducer electrically coupled in series and (b) driving a second transducer pair with the first electrical signal, where the second transducer pair is electrically coupled in parallel with the first transducer pair, and where the second transducer pair includes a second inverted ultrasound transducer and a second non-inverted ultrasound transducer electrically coupled in series.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: June 25, 2019
    Inventor: William L. Puskas
  • Patent number: 10333489
    Abstract: A crystal unit includes an AT-cut crystal element and a container. The AT-cut crystal element has an approximately rectangular planar shape. The AT-cut crystal element includes a first inclined portion, second inclined portions, and a first secured portion. The first inclined portion is inclined such that the crystal element decreases in thickness from a proximity of the first side to the first side. The second inclined portions are disposed on respective both ends of the first side, the second inclined portions being formed integrally with the first inclined portion. The second inclined portions are inclined gentler than the first inclined portion. The first secured portion and a second secured portion are formed integrally with the second inclined portion. The first secured portion and the second secured portion each project out from the first side to outside the crystal element to be used for securing with the securing members.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: June 25, 2019
    Assignee: NIHON DEMPA KOGYO CO., LTD.
    Inventors: Kenji Shimao, Yoshiharu Sato, Hirokazu Iwata
  • Patent number: 10305397
    Abstract: A vibration actuator unit includes: an electromechanical converting element that converts an electric vibration of an applied actuating voltage into a mechanical vibration; and a contact portion that contacts an actuated surface of an actuating subject and a transmits a mechanical vibration of the electromechanical converting element to the actuated surface as an actuating force, wherein the electromechanical converting element periodically bends within a first vibration plane crossing the actuated surface to vibrate the contact portion within the first vibration plane, and periodically bends within a second vibration plane crossing the first vibration plane to vibrate the contact portion within the second vibration plane.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 28, 2019
    Assignee: NIKON CORPORATION
    Inventors: Eiji Matsukawa, Masaaki Kusano
  • Patent number: 10305396
    Abstract: A method and device to produce a potential between two electrodes immersed in an ion containing fluid on application of an external stimuli that produces a temporal shear flow of the fluid at the fluid/electrode interface. The external stimuli may be, for example, contact pressure, motion, vibration, electric and/or magnetic field, fluid flow, or a combination of more than one stimuli. The potential produced may be harvested for energy, or sensing the external stimuli. A method to provide family of energy generators to harvest energy from ambient energy sources, such as, motion, fluid flow, contact pressure, and vibrations. A method to provide self-powered sensors where the potential generated may be, for example, directly transmitted to a receiver for signal processing by wireless or wired communication. A energy generator and/or sensor is a also provided.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: May 28, 2019
    Inventor: Ravi F. Saraf
  • Patent number: 10305019
    Abstract: Piezoelectric devices are described fabricated in packaging buildup layers. In one example, a package has a plurality of conductive routing layers and a plurality of organic dielectric layers between the conductive routing layers. A die attach area has a plurality of vias to connect to a microelectronic die, the vias connecting to respective conductive routing layers. A piezoelectric device is formed on an organic dielectric layer, the piezoelectric device having at least one electrode coupled to a conductive routing layer.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 28, 2019
    Assignee: Intel Corporation
    Inventors: Feras Eid, Shawna M. Liff
  • Patent number: 10291199
    Abstract: A method of making an acoustic wave sensor includes the steps of providing a piezoelectric substrate layer and printing on the substrate layer a sensor layer comprising a first interdigitated acoustic wave transducer, a sensing film, and positioned on an opposing side of the sensing film from the first interdigitated acoustic wave transducer at least one selected from the group consisting of a second interdigitated acoustic wave transducer and a Bragg reflector. An insulation layer can be printed. An antenna can be printed in an antenna layer, and the insulation layer can be interposed between the antenna layer and the sensor layer. An electrical connection can be printed between the antenna and the first interdigitated acoustic wave transducer. An acoustic wave sensor is also disclosed.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 14, 2019
    Assignee: UT-BATTELLE, LLC
    Inventor: Timothy J. McIntyre
  • Patent number: 10284172
    Abstract: An assembly including an electrical connection substrate formed of material having a Young's modulus of less than about 10 MPa, an acoustic device die having opposite end portions mounted on and electrically connected to the electrical connection substrate and a mold compound layer encapsulating the acoustic device die and interfacing with the substrate.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: May 7, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Enis Tuncer, Abram Castro
  • Patent number: 10280119
    Abstract: A barium titanate piezoelectric ceramic having good piezoelectric properties and mechanical strength and a piezoelectric element that includes the ceramic are provided. A method for making a piezoelectric ceramic includes forming a compact composed of an oxide powder containing barium titanate particles, sintering the compact, and decreasing the temperature of the compact after the sintering. The sintering includes (A) increasing the temperature of the compact to a first temperature within a temperature range of a shrinking process of the compact; (B) increasing the temperature of the compact to a second temperature within a temperature range of a liquid phase sintering process of the compact after (A); (C) decreasing the temperature of the compact to a third temperature within the temperature range of the shrinking process of the compact after (B); and (D) retaining the third temperature after (C).
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: May 7, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Hiroshi Saito, Tatsuo Furuta, Jumpei Hayashi, Takayuki Watanabe, Toshihiro Ifuku
  • Patent number: 10276775
    Abstract: A vibration device that includes a vibration portion, a support portion connected to the vibration portion, a bending-vibrating portion connected to the support portion, and a frame-shaped base portion connected to the bending-vibration portion and disposed so as to surround the vibration portion. The base portion defines a slit that extends in a first direction crossing a second direction in which the support portion extends from the vibration portion, the slit defining first and second fixed ends of the bending-vibrating portion and which are continuous with the base portion. A length between a portion of the bending-vibrating portion connected to the support portion to one of the first and second fixed ends of the bending-vibrating portion is in a range of ?/8 to 3?/8, where ? denotes a wavelength of a bending vibration corresponding to a frequency of a characteristic vibration of the vibration portion.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: April 30, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takashi Hase, Toshio Nishimura, Hiroaki Kaida
  • Patent number: 10263597
    Abstract: A crystal unit includes an AT-cut crystal element, excitation electrodes, extraction electrodes. The AT-cut crystal element has an approximately rectangular planar shape. The excitation electrodes are disposed on front and back of principal surfaces of the AT-cut crystal element. The extraction electrodes are extended from the excitation electrodes to a side of one side of the AT-cut crystal element via a side surface of the AT-cut crystal element. Assuming that an extraction angle of the extraction electrode from the principal surface to the side surface is defined as an angle ? with respect to an X-axis of a crystallographic axis of a crystal, the angle ? is equal to or greater than 59 degrees and equal to or less than 87 degrees.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: April 16, 2019
    Assignee: NIHON DEMPA KOGYO CO., LTD.
    Inventors: Yoshiharu Sato, Kenji Shimao, Hirokazu Iwata
  • Patent number: 10243137
    Abstract: A piezoelectric element includes a first electrode, a piezoelectric layer which is formed on the first electrode by using a solution method, and is formed from compound oxide which has a perovskite structure in which potassium, sodium, and niobium are provided, and a second electrode which is provided on the piezoelectric layer. The piezoelectric layer has a peak derived from a (200) plane and a peak derived from a (002) plane in an X-ray diffraction pattern obtained by ?-2? measurement.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 26, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Koji Sumi, Tetsuya Isshiki, Toshiaki Takahashi, Tomokazu Kobayashi, Kazuya Kitada
  • Patent number: 10230349
    Abstract: An acoustic wave device is an end surface reflection-type acoustic wave device and includes a substantially rectangular-parallelepiped composite substrate in which a piezoelectric substrate and a supporting substrate are joined together, with a pair of IDT electrodes provided on the substrate in such a manner as to be intercalated with each other. A chipping size in a first side face of the substrate is 1/10 of a wavelength ? of an acoustic wave or smaller, the face extending orthogonally to a direction of acoustic-wave propagation. A chipping size in a second side face of the substrate is larger than the chipping size in the face and is, for example, ½ of the wavelength ? or larger and 50 times the wavelength ? or smaller, the face extending in the direction of acoustic-wave propagation.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 12, 2019
    Assignee: NGK INSULATORS, LTD.
    Inventors: Tomoyoshi Tai, Akira Hamajima, Yuji Hori