Patents Examined by Katherine Fernandez
  • Patent number: 10052076
    Abstract: A radiological imaging apparatus (10) acquires a radiological brain image of a subject after administration of a radio tracer binding to a target substance indicative of a clinical pathology. In one embodiment, the clinical pathology is amyloid deposits in the brain at a level correlative with Alzheimer's disease and the target substance is amyloid deposits. A processor (C) tests for the clinical pathology by: performing non-rigid registration of the brain image with a positive template (32P) indicative of having the clinical pathology and with a negative template (32N) indicative of not having the clinical pathology; generating positive and negative result metrics (36P, 36N) quantifying closeness of the registration with the positive and negative template respectively; and generating a test result (54) based on the positive result metric and the negative result metric. An independent test result is generated by quantifying a second mode of an intensity histogram for the brain image.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 21, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Frank Olaf Thiele
  • Patent number: 10052125
    Abstract: Described herein are atherectomy catheters, systems and methods that include a distal tip region that may be moved laterally so that its long axis is parallel with the long axis of the main catheter body axis. Displacing the distal tip region laterally out of the main catheter body axis exposes an annular blade and opens a passageway for cut tissue to enter a storage region within the catheter. The annular blade may be internally coupled to a drive shaft that rotates the blade, and thus the exposed blade edge may have the same crossing profile (OD) as the rest of the distal end region of the catheter. Also described herein are gear-driven atherectomy devices that may use a cable drive shaft to actuate the annular blade. Both push-to-cut and pull-to-cut variations are described, as are methods for cutting tissue and systems including these atherectomy catheters.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: August 21, 2018
    Assignee: Avinger, Inc.
    Inventors: Michael H. Rosenthal, Michael Zung, Nicholas J. Spinelli, Charles W. McNall, John B. Simpson, John F. Black
  • Patent number: 10052082
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 21, 2018
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, Jr., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Patent number: 10045703
    Abstract: An embodiment in accordance with the present invention provides a system and method for imaging living tissue and processing laser speckle data anisotropically to calculate laser speckle contrast preferentially along the direction of blood flow. In the present invention, raw laser speckle images are obtained and processed resulting in the anisotropic laser speckle images. The system and method involve the determination of the direction of blood flow for every pixel within the region of interest (primary pixel) and subsequent extraction of a set of secondary pixels in the spatio-temporal neighborhood of the primary pixel that is anisotropic in the direction of blood flow. Speckle contrast is then calculated for every primary pixel as the ratio of standard deviation and mean of all secondary pixels in this anisotropic neighborhood and collectively plotted using a suitable color mapping scheme to obtain an anisotropic laser speckle contrast image of the region of interest.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: August 14, 2018
    Assignee: The Johns Hopkins University
    Inventors: Abhiskek Rege, Janaka Senarathna, Nitish V. Thakor
  • Patent number: 10043129
    Abstract: A computer-implemented method for performing a functional assessment of a network is disclosed. The network includes a plurality of interacting network elements. The method includes measuring a state of each of the elements at a plurality of time instances, thereby determining a plurality of state values associated with each of the elements, and calculating for each element an associated median value representing a median of the state values associated with that element. The method further includes identifying for each time instance a first total number of elements with an associated state value at that time instance that is above its median value, and a second total number of elements with an associated state value at that time instance that is below its median value, and determining whether the network has departed from an equilibrium state based on the first total number and the second total number for each time instance.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: August 7, 2018
    Assignees: Regents of the University of Minnesota, Department of Veterans Affairs
    Inventor: Apostolos Georgopoulos
  • Patent number: 10039455
    Abstract: Systems, methods, and devices of the various embodiments enable continuous non-invasive monitoring of blood pressure with a minimum of interference. The various embodiments may provide a method for adaptation for the calibration for continuous measurements of blood pressure, wherein the measured quantity may be related to an arterial lumen or arterial cross sectional area comprising calibrating the conversion for incremental variations of arterial properties and absolute value adaptation by exploitation of the exponential decay during the diastole. In various embodiments, continuous calibration of a non-interfering blood pressure measurement device may be initiated based on a change in mean arterial pressure being greater than a threshold value, such as a pressure value associated with an actual measured distension of a patient's artery.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: August 7, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Lars Lading, David Boettcher Baek
  • Patent number: 10028727
    Abstract: Shading of a site other than a site of interest is disabled to allow construction of a visually good three-dimensional image even when the site other than the site of interest is displayed in a translucent manner. An ultrasound diagnostic apparatus includes a sending section that sends an ultrasonic wave to a diagnosing object via an ultrasound probe, a receiving section that receives a reflected echo signal from the diagnosing object, a three-dimensional elasticity image constructing section that performs volume rendering with shading on elasticity volume data with an elasticity value based on the reflected echo signal to construct a three-dimensional elasticity image, and an image display section that displays the three-dimensional elasticity image. The three-dimensional elasticity image constructing section performs the volume rendering using an elasticity opacity according to the elasticity value and disables the shading of a portion with the elasticity opacity with a predetermined value.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: July 24, 2018
    Assignee: HITACHI, LTD.
    Inventor: Shinsuke Inoue
  • Patent number: 10028668
    Abstract: Described herein are methods, systems, and software for monitoring blood pressure. In some embodiments, a using a mobile device is used. The blood pressure monitoring system utilizes heart rate measurements at two separate locations on the body to calculate a differential pulse arrival time which is used to estimate blood pressure. The heart rate measurements can be taken simultaneously, or they can be taken sequentially while simultaneously taking ECG measurement. If taken sequentially, the heart rate measurements are aligned with the ECG to determine the differential. Accurate, inexpensive, and discreet blood pressure monitoring is thus provided.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: July 24, 2018
    Assignee: ALIVECOR, INC.
    Inventor: David E. Albert
  • Patent number: 10028692
    Abstract: Methods and systems for determining the concentration of one or more analytes from a sample such as blood or plasma are described. The systems described herein can be configured to withdraw a sample from a source of fluid, direct a first portion of the withdrawn sample to an analyte monitoring system and return a second portion of the sample. The analyte monitoring system can be connected to the fluid source via a connector that is configured to improve fluid flow and reduce blood clotting risk. These goals can be accomplished, for example, by employing coatings in or on a connector, positioning a resilient substance at or near the junction, by reducing dead space volume, by using resiliency to improve fit, by extending a portion of one connector to better mate with a portion of another connector, etc.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 24, 2018
    Assignee: OptiScan Biomedical Corporation
    Inventors: Michael Butler, Eugene Lim, Craig Johnson
  • Patent number: 10028662
    Abstract: A thermoacoustic imaging system is provided for use in combination with an ultrasound imaging system for imaging features of tissue, the ultrasound imaging system including an ultrasound imaging probe including a transmit-receive transducer array with a plurality of transmit-receive array elements. The thermoacoustic imaging system includes a receive-only transducer array with a plurality of receive-only array elements, registered with the plurality of transmit-receive array elements. The transmit-receive transducer array is housed in an ultrasound imaging probe, and the receive-only transducer array is housed in a thermoacoustic imaging probe. The thermoacoustic imaging probe is mechanically joined to the ultrasound imaging probe, e.g., as a sleeve fitted to the ultrasound imaging probe.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: July 24, 2018
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Michael M. Thornton, Paul A. Picot
  • Patent number: 10022068
    Abstract: Systems and methods are provided for detecting held breath events. A physiological signal, such as a photoplethysmograph (PPG) signal, is processed to extract respiration-related morphology metric signals. The morphology signals are analyzed to determine when a patient's breath is being held.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 17, 2018
    Assignee: Covidien LP
    Inventors: Scott McGonigle, James Ochs
  • Patent number: 10022518
    Abstract: A medical tube includes a first portion, a second portion, a third portion, and a fourth portion in this order from a proximal side to a distal side thereof. The first portion has a tubular resin layer, the second portion has a tubular inner layer and outer layer, the third portion as an inner layer and outer layer, and the fourth portion has a tubular resin layer. When flexural rigidity of the first portion, the second portion, the third portion, and the fourth portion is G1, G2, G3, and G4, respectively, the flexural rigidity of each portion being configured to have a relationship with each other portion based upon the following expression (1): G1>G2>G3>G4??(1).
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: July 17, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Yasunori Yamashita, Tooru Oota, Youichi Ito, Naoko Katou
  • Patent number: 10004423
    Abstract: The embodiments relate to a local coil arrangement for an imaging MRI system, where the system is a head local coil or a head/neck local coil, which includes a mirror housing that is mounted in a rotatable manner on the local coil arrangement.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: June 26, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Daniel Driemel
  • Patent number: 10004467
    Abstract: A high contrast instrument, such as a radiopaque portion, can be captured and/or viewed in an image that is acquired with an imaging system, such as with a fluoroscopic imaging system. A statistical model can be used to assist in identifying a possible or probable location of a target. A user may move the instrument coil to the statistically probable location of the target to, for example, perform a procedure or carry out a task.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: June 26, 2018
    Assignee: Medtronic, Inc.
    Inventors: Ryan P. Lahm, Ronald Alan Drake, Eric A. Schilling, Brian W. Schousek, Mark W. Shepler, Lester O. Stener
  • Patent number: 9999354
    Abstract: A method and system for inspecting biological tissue that has no applied coatings or treatments to improve reflectivity comprises an optical detection system with an exposed surface for inspection by an optical detection system; and a laser for exciting an ultrasonic wave within the tissue, which wave propagates within the tissue at least near the surface.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: June 19, 2018
    Assignee: National Research Council of Canada
    Inventors: Guy Rousseau, Alain Blouin, Jean-Pierre Monchalin
  • Patent number: 9999789
    Abstract: The invention relates to a temperature distribution determining apparatus for determining a temperature distribution within an object caused by applying energy to the object. A temperature distribution measuring unit (6, 7) measures a spatially and temporally dependent first temperature distribution in the object (3), while the energy is applied to the object (3) such that the object (3) is heated to a temperature within a first temperature range, and a temperature distribution estimating unit (5) estimates a spatially and temporally dependent second temperature distribution in the object (3) within a second temperature range, which is different to the first temperature range, based on the spatial and temporal dependence of the measured first temperature distribution. Since temperature distributions can be obtained not only in the first temperature range, but also in the second temperature range, the overall temperature range, in which the temperature distribution can be determined, can be increased.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: June 19, 2018
    Assignee: Koninklijke Philips N.V.
    Inventor: Michael Harald Kuhn
  • Patent number: 9999402
    Abstract: A computer implemented method, a computerized system and a computer program product for automatic image segmentation. The computer implemented method comprises obtaining an image of a tissue, wherein the image is produced using an imaging modality. The method further comprises automatically identifying, by a processor, a tissue segment within the image, wherein said identifying comprises identifying an artifact within the image, wherein the artifact is a misrepresentation of a tissue structure, wherein the misrepresentation is associated with the imaging modality; and searching for the tissue segment in a location adjacent to the artifact.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dan Chevion, Pavel Kisilev, Boaz Ophir, Eugene Walach
  • Patent number: 9999747
    Abstract: A sphenocath including a sheath assembly including a sheath hub with a sheath tube extending therefrom with a passage extending from a proximal end of the sheath hub to a distal end of the sheath tube; a catheter assembly including a catheter hub with a catheter tube extending therefrom with a passage extending from a proximal end of the catheter hub to a distal end of the catheter tube; wherein the catheter assembly passes through the sheath assembly with a portion of the catheter hub engaging a portion of the sheath hub to limit relative rotation between the hubs while permitting relative axial movement such that in an initial non-extended position the distal end of the catheter tube is proximate to the distal end of the sheath tube. A system further including a guidewire is also provided.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 19, 2018
    Assignee: JET MEDICAL, INC.
    Inventors: Christopher Linden, Frank Debartola, Donald Geer, Kevin E. Sanford, Daryl J. Clark, Timothy M. Schweikert
  • Patent number: 9993259
    Abstract: Systems, devices and methods to access and/or treat targeted body tissue (e.g., tendon tissue, ligament tissue, muscle tissue, bony tissue, and the like) under the guidance of ultrasound imaging equipment are described. Such systems can permit the intra-operative identification of the targeted tissue and the ability to deliver the appropriate instrumentation to that tissue.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: June 12, 2018
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Darryl E. Barnes, Jay Smith
  • Patent number: 9993159
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources for early detection and monitoring of breast cancer, as well as other kinds of cancers may detect decreases in lipid content and increases in collagen content, possibly with a shift in the collagen peak wavelengths and changes in spectral features associated with hemoglobin and water content as well. Wavelength ranges between 1000-1400 nm and 1600-1800 nm may permit relatively high penetration depths because they fall within local minima of water absorption, scattering loss decreases with increasing wavelength, and they have characteristic signatures corresponding to overtone and combination bands from chemical bonds of interest, such as hydrocarbons. Broadband light sources and detectors permit spectroscopy in transmission, reflection, and/or diffuse optical tomography. High signal-to-noise ratio may be achieved using a fiber-based super-continuum light source.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: June 12, 2018
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam