Patents Examined by Kenneth A Bratland, Jr.
  • Patent number: 11479875
    Abstract: A system for manufacturing one or more single crystals of a semiconductor material by physical vapor transport (PVT) includes a reactor having an inner chamber adapted to accommodate a PVT growth structure for growing the one or more single crystals inside. The reactor accommodates the PVT growth structure in an orientation with a growth direction of the one or more single crystals inside the PVT growth structure substantially horizontal with respect to a direction of gravity or within an angle from horizontal of less than a predetermined value.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 25, 2022
    Assignee: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel
  • Patent number: 11479876
    Abstract: The present invention includes: transferring a C-plane sapphire thin film 1t having an off-angle of 0.5-5° onto a handle substrate composed of a ceramic material having a coefficient of thermal expansion at 800 K that is greater than that of silicon and less than that of C-plane sapphire; performing high-temperature nitriding treatment on the GaN epitaxial growth substrate 11 and covering the surface of the C-plane sapphire thin film 1t with a surface treatment layer 11a made of AlN; having GaN grow epitaxially on the surface treatment layer 11a; ion-implanting a GaN film 13; pasting and bonding together the GaN film-side surface of the ion-implanted GaN film carrier and a support substrate 12; performing peeling at an ion implantation region 13ion in the GaN film 13 and transferring a GaN thin film 13a onto the support substrate 12; and obtaining a GaN laminate substrate 10.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: October 25, 2022
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Yoshihiro Kubota, Kazutoshi Nagata
  • Patent number: 11466384
    Abstract: A method for forming a laterally-grown group III metal nitride crystal includes providing a substrate, the substrate including one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, ZrB2, BP, InP, AlON, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, lithium aluminate (LiAlO2), LiGaO2, Ca8La2(PO4)6O2, gallium nitride, or aluminum nitride (AlN), forming a pattern on the substrate, the pattern comprising growth centers having a minimum dimension between 1 micrometer and 100 micrometers, and being characterized by at least one pitch dimension between 20 micrometers and 5 millimeters, growing a group III metal nitride from the pattern of growth centers vertically and laterally, and removing the laterally-grown group III metal nitride layer from the substrate.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 11, 2022
    Assignee: SLT Technologies, Inc.
    Inventors: Mark P. D'Evelyn, Derrick S. Kamber
  • Patent number: 11453956
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 27, 2022
    Assignee: SLT Technologies, Inc.
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Patent number: 11453957
    Abstract: A crystal growing apparatus includes: a crucible which includes a main body portion, and a first portion having a radiation rate different from that of the main body portion, and is capable of controlling a temperature of a specific region inside during heating to a higher or lower temperature than that of the other regions; and a heating unit which is positioned on the outside of the crucible and is configured to heat the crucible by radiant heat, and the first portion is at a position where the crucible and a line segment connecting a heating center of the heating unit and the specific region intersect with each other.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: September 27, 2022
    Assignee: SHOWA DENKO K.K.
    Inventors: Rimpei Kindaichi, Yoshishige Okuno, Tomohiro Shonai
  • Patent number: 11453959
    Abstract: A crystal growth apparatus according to the present embodiment includes a crucible, a heater which is installed on an outward side of the crucible and surrounds the crucible, and a coil which is installed on an outward side of the heater and surrounds the heater, in which an inner surface of the heater on the crucible side includes a first region, and a second region which is further away from an outer side surface of the crucible than the first region is.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: September 27, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Yohei Fujikawa
  • Patent number: 11453958
    Abstract: The present invention provides a heat-insulating shield member, wherein the heat-insulating shield member is arranged and used between a SiC source housing (3) and a substrate support (4) in a single crystal manufacturing apparatus (10), wherein the single crystal manufacturing apparatus (10) comprises a crystal growth container (2) and a heating member (5) arranged on an outer periphery of the crystal growth container (2), wherein the crystal growth container (2) includes the SiC source housing (3) disposed at a lower portion of the apparatus, and the substrate support (4) which is arranged above the SiC source housing (3) and supports a substrate (S) used for crystal growth so as to face the SiC source housing (3), and wherein the single crystal manufacturing apparatus (10) is configured to grow a single crystal (W) from a SiC source (M) on the substrate (S) by sublimating the SiC source (M) from the SiC source housing (3).
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: September 27, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Yohei Fujikawa
  • Patent number: 11441233
    Abstract: The present disclosure provides an open temperature field device, including a bottom plate, a drum, a filler, and a cover plate. The bottom plate may be mounted on a bottom of the temperature field device and cover an open end of the drum. The cover plate may be mounted on a top of the temperature field device and cover the other open end of the drum. The filler may be filled inside the drum. In the temperature field device, the filler filled inside the drum can form a new thermal insulation layer, which effectively prevents the problem of sudden temperature changes caused by the cracking of the drum and improves the stability performance and a count of reusable times of the temperature field device. Meanwhile, by adjusting the filling height and the tightness of the filler, the temperature gradient of the temperature field device can be adjusted.
    Type: Grant
    Filed: March 21, 2021
    Date of Patent: September 13, 2022
    Assignee: MEISHAN BOYA ADVANCED MATERIALS CO., LTD.
    Inventors: Yu Wang, Weiming Guan, Zhenxing Liang
  • Patent number: 11441235
    Abstract: A crystal growing apparatus includes: a crucible including a main body portion and a low radiation portion having a radiation rate lower than that of the main body portion; and a heating unit which is positioned on the outside of the crucible and is configured to heat the crucible by radiant heat, and the low radiation portion is provided on an outer surface of a first point which is a heating center, in a case where the crucible does not include the low radiation portion.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: September 13, 2022
    Assignee: SHOWA DENKO K.K.
    Inventors: Rimpei Kindaichi, Yoshishige Okuno, Tomohiro Shonai
  • Patent number: 11434582
    Abstract: A method of producing silicon carbide is disclosed. The method comprises the steps of providing a sublimation furnace comprising a furnace shell, at least one heating element positioned outside the furnace shell, and a hot zone positioned inside the furnace shell surrounded by insulation. The hot zone comprises a crucible with a silicon carbide precursor positioned in the lower region and a silicon carbide seed positioned in the upper region. The hot zone is heated to sublimate the silicon carbide precursor, forming silicon carbide on the bottom surface of the silicon carbide seed. Also disclosed is the sublimation furnace to produce the silicon carbide as well as the resulting silicon carbide material.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 6, 2022
    Assignee: GTAT Corporation
    Inventors: Roman V. Drachev, Santhanaraghavan Parthasarathy, Andriy M. Andrukhiv, David S. Lyttle
  • Patent number: 11427927
    Abstract: A SiC single crystal manufacturing apparatus of the present invention includes a growth container having a growth space in which a SiC single crystal is grown in a first direction and a heat insulating material which covers the growth container and includes a plurality of units, and the plurality of units include a first unit and a second unit having at least a thermal conductivity different from that of the first unit, and the first unit includes a container made of at least one of graphite and a metal carbide and a filler filled into the container in a replaceable manner.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: August 30, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Yohei Fujikawa
  • Patent number: 11424147
    Abstract: According to an aspect of the present invention, there is provided a deposition apparatus including: a reaction space which is a reaction chamber; a front chamber for deposition; a raw material supply port that is configured to supply a raw material to the reaction space; an opening for measuring a temperature of a wafer mounted on a wafer mounting surface of a mounting stage disposed in the reaction space; and a partition plate that partitions the reaction space and the front chamber for deposition, in which the raw material supply port is positioned on the same plane as the partition plate or on the reaction space side from the partition plate, and the opening is positioned in the front chamber for deposition side from the partition plate.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: August 23, 2022
    Assignee: SHOWA DENKO K.K.
    Inventors: Keisuke Fukada, Naoto Ishibashi, Hironori Atsumi
  • Patent number: 11396716
    Abstract: A group-III nitride substrate includes: a base material part of a group-III nitride including a front surface, a back surface, and an inner layer between the front surface and the back surface, wherein the carbon concentration of the front surface of the base material part is higher than the carbon concentration of the inner layer.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 26, 2022
    Assignees: OSAKA UNIVERSITY, PANASONIC HOLDINGS CORPORATION
    Inventors: Yusuke Mori, Masashi Yoshimura, Masayuki Imanishi, Akira Kitamoto, Junichi Takino, Tomoaki Sumi, Yoshio Okayama
  • Patent number: 11393683
    Abstract: Aspects of the disclosure relate to processes for epitaxial growth of Group III/V materials at high rates, such as about 30 ?m/hr or greater, for example, about 40 ?m/hr, about 50 ?m/hr, about 55 ?m/hr, about 60 ?m/hr, about 70 ?m/hr, about 80 ?m/hr, and about 90-120 ?m/hr deposition rates. The Group III/V materials or films may be utilized in solar, semiconductor, or other electronic device applications. The Group III/V materials may be formed or grown on a sacrificial layer disposed on or over the support substrate during a vapor deposition process. Subsequently, the Group III/V materials may be removed from the support substrate during an epitaxial lift off (ELO) process. The Group III/V materials are thin films of epitaxially grown layers containing gallium arsenide, gallium aluminum arsenide, gallium indium arsenide, gallium indium arsenide nitride, gallium aluminum indium phosphide, phosphides thereof, nitrides thereof, derivatives thereof, alloys thereof, or combinations thereof.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 19, 2022
    Assignee: UTICA LEASECO, LLC
    Inventors: Lori D. Washington, David P. Bour, Gregg Higashi, Gang He
  • Patent number: 11371165
    Abstract: A vapor phase epitaxial growth device comprises a reactor vessel. The device comprises a wafer holder arranged in the reactor vessel. The device comprises a first material gas supply pipe configured to supply first material gas to the reactor vessel. The device comprises a second material gas supply pipe configured to supply second material gas, which is to react with the first material gas, to the reactor vessel. The device comprises a particular gas supply pipe having a solid unit arranged on a supply passage. The device comprises a first heater unit configured to heat the solid unit to a predetermined temperature or higher. The solid unit comprises a mother region and a first region arranged continuously within the mother region. The mother region is a region that does not decompose at the predetermined temperature. The first region is a region that decomposes at the predetermined temperature and contains Mg.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 28, 2022
    Assignee: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM
    Inventors: Shugo Nitta, Naoki Fujimoto, Hiroshi Amano, Yoshio Honda
  • Patent number: 11359306
    Abstract: A method for preparing a SiC ingot includes preparing a crucible assembly comprising a crucible body having an internal space, loading a raw material into the internal space of the crucible body and placing a plurality of SiC seed in the internal space of the crucible body at regular intervals spaced apart from the raw material, and growing the SiC ingot from the plurality of SiC seed by adjusting the internal space of the crucible body to a crystal growth atmosphere such that the raw material is vapor-transported and deposited to the plurality of SiC seed. A density of the crucible body may be 1.70 to 1.92 g/cm3.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 14, 2022
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Myung-Ok Kyun, Jongmin Shim, Eun Su Yang, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11352712
    Abstract: One or more embodiments relate to a method for controlling fiber growth and fiber diameter in a laser heated pedestal growth (LHPG) system so as to provide long, continuous single-crystal optical fibers of uniform diameter. The method generally provides three independent parameter feedback controls to control the molten zone height, laser power, and fiber drawing rates simultaneously in order to reduce the mismatch between instantaneous diameter changes and current diameter. The method permits the growth of fibers with non-uniform diameters along the fiber's length. The method also provides the capability to stop the LHPG system, remove the exhausted pedestal feedstock with a second pedestal feedstock, and restart the LHPG system to provide a continuous fiber.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: June 7, 2022
    Assignee: Energy, United States Department of
    Inventors: Michael P. Buric, Bo Liu
  • Patent number: 11346016
    Abstract: A method of growing a doped monocrystalline ingot using a crystal growing system is provided. The crystal growing system includes a growth chamber, a dopant feeding device, and a feed tube. The method includes preparing a melt of semiconductor or solar-grade material in a crucible disposed within the growth chamber, introducing a solid dopant into the feed tube with the dopant feeding device, melting the solid dopant within the feed tube to a form a liquid dopant, introducing the liquid dopant into the melt below a surface of the melt, and growing a monocrystalline ingot from the melt by contacting the melt with a seed crystal and pulling the seed crystal away from the melt.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 31, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Marco D'Angella, Mauro Diodà
  • Patent number: 11339501
    Abstract: The present invention discloses a method for preparing large-area transition metal dichalcogenide (TMDC) single-crystal films and the products obtained therefrom. The method comprises the steps of: (1) providing a single-crystal C-plane sapphire with surface steps along <1010> directions; and (2) taking the sapphire in step (1) as the substrate, generating unidirectionally arranged TMDC domains on the sapphire surface based on a vapor deposition method and keeping the domains continuously grow and merge into a large-area single-crystal film. The lateral size of the TMDC single-crystal films prepared by the method can reach inch level or above, and is limited only by the size of the substrate.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: May 24, 2022
    Assignee: NANJING UNIVERSITY
    Inventors: Xinran Wang, Taotao Li, Yi Shi
  • Patent number: 11326274
    Abstract: Provided is a single crystal growth crucible including a first housing and a second housing, in which a fitting portion between the first housing and the second housing has a first protruding portion, which is provided by protruding inner wall side of the first housing toward the second housing, and a second protruding portion, which is provided by protruding outer wall side of the second housing toward the first housing and covers an outer circumferential surface of the first protruding portion, the first protruding portion is formed such that an outer diameter of a tip portion thereof is larger than that of a base portion thereof in the protruding direction, and the second protruding portion is formed such that an inner diameter of a tip portion thereof is smaller than that of a base portion thereof in the protruding direction, the outer diameter of the tip portion of the first protruding portion is equal to or smaller than the inner diameter of the tip portion of the second protruding portion at room tempe
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 10, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Yohei Fujikawa