Patents Examined by Kenneth Vanderpuye
  • Patent number: 7346282
    Abstract: An optical-space transmission apparatus for use in communication by using light propagating in a space includes a light-receiving unit, an optical system including a movable mirror and introducing light incident thereon to the light receiving unit with the movable mirror, a controller controlling drive of the movable mirror, and a detecting unit detecting an intensity of the light received in the light-receiving unit. The controller modifies a control characteristic of the movable mirror in accordance with a change in the received-light intensity.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 18, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuo Sakanaka, Masatoshi Otsubo
  • Patent number: 7346277
    Abstract: A joint “packet-optical” layer restoration mechanism protects against single, packet-layer router failures by managing network resources from both the packet layer and the optical transport layer in a synergistic manner. It reuses packet-layer router service-ports and/or transport-layer service wavelengths associated with optical switch-ports instead of reserving additional standby packet-layer router service-ports. It can reuse resources from primary paths that are unaffected by router failures and paths that exist for link-failure protection at the optical layer. Embodiments feature a modified node structure that includes both an IP router and a dynamically reconfigurable OXC, which dynamically establishes connectivity between IP-router ports and transport-layer optical fibers. The joint-layer router provides fine-granularity grooming at the IP layer and full-fledged wavelength networking via dynamic wavelength switching and/or wavelength translation at the optical layer.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: March 18, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Gary W. Atkinson, Chunxiao Chigan, Ramesh Nagarajan
  • Patent number: 7343096
    Abstract: System and methods for upgrading an optical add-drop multiplexer (OADM) to higher degree wavelength selective router (WSR)/wavelength selective switch (WSS) are disclosed. For example, an OADM of degree-2 may be provisioned for upgrades to degree-3 and higher. The existing links power and signal-to-noise (SNR) budgets are not significantly affected when the node is upgraded to a higher degree WSS/WSR. Cascaded power dividers and combiners may be used in conjunction with optical amplifiers and reconfigurable blocking filters to increase the number of paths over which an optical signal can be routed/switched without affecting the paths already utilized. Prior to enabling service on either an input or output fiber, taps and combiners are pre-provisioned so as to ensure that at least one additional transmission path is always available.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: March 11, 2008
    Assignee: Ciena Corporation
    Inventor: Vipul Bhatnagar
  • Patent number: 7343100
    Abstract: This application describes techniques for optical multiplexing and demultiplexing in optical communication systems based on polarization multiplexing of different signal channels.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 11, 2008
    Assignee: General Photonics Corporation
    Inventor: X. Steve Yao
  • Patent number: 7340167
    Abstract: A method and a Fibre Channel switch element are provided that allows communication between a host system and a target device attached to a proprietary switch fabric in a network. The Fibre Channel switch element includes a first port that communicates with the target device through the proprietary switch fabric by logging on behalf of the host system so that the proprietary switch behaves as if it was directly communicating with the host system; and a second port that communicates with the host system and collects host bus adapter (“HBA”) identification information, wherein the HBA identification information is used to map the first port to the second port so that when the host system communicates with the target device the Fibre Channel switch element is transparent to the proprietary switch fabric.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 4, 2008
    Assignee: QLOGIC, Corporation
    Inventor: Edward C McGlaughlin
  • Patent number: 7333737
    Abstract: There is provided an optical receiver in which a time gate can be realized with a simple, low-cost configuration, and which has few aspects that require adjustment. The optical receiver of the present invention comprises a decoding circuit in which optical signals which are spread over time in accordance with a coding pattern are inputted and decoded in accordance with a decoding pattern; and a time gate circuit for generating a time gate signal that represents the interval of time in which a significant optical pulse is present in the decoded optical signal, and controlling the passage of the decoded optical signal.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: February 19, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Naoki Minato, Satoko Kutsuzawa
  • Patent number: 7330653
    Abstract: A Quantum Dense Coding System. The system includes a source, a transmitter and a receiver. The source is capable of down-converting a pump photon into a signal photon and an idler photon and outputting probability amplitudes, the signal photon and the idler photon, wherein the signal photon and the idler photon have an equal probability of outputting to a transmission channel and a reception channel. The transmitter is capable of receiving probability amplitudes, signal photons and idler photons from the transmission channel; and selectively changing vertical and horizontal phases of probability amplitudes of signal photons and idler photons; and outputting probability amplitudes, signal photons and idler photons. The receiver is capable of receiving probability amplitudes, signal photons and idler photons from the reception channel and the transmitter; and identifying vertical and horizontal phase changes created by the transmitter. A method for the system is also described.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: February 12, 2008
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Mark W. Roberts, Markham E. Lasher
  • Patent number: 7319659
    Abstract: A method of mode detection for OFDM signals. The method comprises the steps of delaying the OFDM signal for a first and second number of samples, multiplying the two delayed signals by coefficient signals, and deriving a sum of the two products, deriving an error signal by subtracting the sum of the two products from the OFDM signal, extracting amplitudes of the coefficient signals, and accordingly deriving step size signals, updating the coefficient signals according to the error signal and step size signals, detecting edges of the amplitudes of the coefficient signals, and determining the guard interval length and transmission mode according to the detected edges.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 15, 2008
    Assignee: Silicon Integrated System Corp.
    Inventor: Yih-Ming Tsuie
  • Patent number: 7317876
    Abstract: A method, a device and a system for communications to and from a retro-reflector device (302) is provided. The retro-reflector device (302) receives a first frame (400) encoded in an input beam (106). The retro-reflector device (302) creates and sends a second frame (420) in a first reflected beam (108) formed by the retro-reflector device (302) reflecting the input beam (106) along a path closely aligned with a path of the input beam. At least one of the first frame (400) and the second frame (420) includes medium access control information. In some implementations, the first frame (400) may include a data throughput rate (404, 406), a preamble (402) and an error correction code (412).
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: January 8, 2008
    Assignee: BBN Technologies Corp.
    Inventor: Brig Barnum Elliott
  • Patent number: 7317874
    Abstract: An optical module includes a transmitter optical sub-assembly comprising a transmitter configured to emit a multi-longitudinal-mode (MLM) spectrum signal having an emission spectrum comprising a plurality of distinct narrow-spectrum peaks each corresponding to a longitudinal mode in the transmitter. The emission spectrum can be shifted in wavelength by a change in the transmitter temperature. The optical module also includes a heating and cooling device configured to control the temperature of the transmitter in response to a temperature-control signal and a receiver optical sub-assembly configured to output a pair of differential digital signals in response to an input optical signal.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: January 8, 2008
    Assignee: Broadway Networks, Inc.
    Inventors: Wen Li, Qing Zhu
  • Patent number: 7315699
    Abstract: An optical device extracts an information bearing sideband such as an FSK or SCM signal (label) from a composite signal that includes the sideband and an orthogonally modulated signal such as an intensity modulated signal (payload) by splicing the composite signal into a polarization maintaining fiber at a desired angle so that the composite signal is separated into two orthogonal polarizations that experience differential group delay in the fiber. The polarized output signals from the fiber are then coupled to a polarization beam splitter at an equivalent or complementary angle to the desired angle so that one sideband of the composite signal appears at a first output of the beam splitter while another sideband appears at a second output of the beam splitter. The sidebands can then be converted to an electrical data signal by using an appropriate receiver, such as a balanced receiver for FSK signals.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: January 1, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Jean Gerardus Leonardus Jennen, Kyriakos Vlachos
  • Patent number: 7315696
    Abstract: Gain setting of a receiving amplifier, is performed by detecting the necessity of gain setting when a receiving amplifier is turned on, requesting WDM transmission equipment in a preceding station to output ASE light; in a WDM transmission equipment of the preceding station, shutting off both passing-through light and added light, and outputting the ASE light corresponding to a predetermined number of wavelengths of signal light; in the receiving amplifier of the WDM transmission equipment in the station of interest, performing the gain setting by use of the ASE light; and on completion of the gain setting, the WDM transmission equipment of the station of interest, requesting the WDM transmission eouipment of the preceding station to halt the ASE light output, and the WDM transmission equipment of the preceding station, halting the ASE light output upon receiving the request and switching the output to an optical signal output.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 1, 2008
    Assignee: Fujitsu Limited
    Inventors: Manabu Suzuki, Miwa Taniguchi, Toshihiro Suzuki, Shingo Hara
  • Patent number: 7313333
    Abstract: Disclosed herein is an apparatus for controlling a decision threshold voltage to an optical receiver, which is capable of automatically controlling the decision threshold voltage to the optical receiver appropriately to signal level decision on the basis of a low-frequency band signal component of an output signal from the optical receiver. The apparatus is adapted to control the level of the decision threshold voltage to the optical receiver, which converts an input optical signal into an electrical signal.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: December 25, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jyung Chan Lee, Seung Il Myong, Joon Ki Lee, Kwang Joon Kim
  • Patent number: 7312909
    Abstract: In order to synchronize the phases of two RZ data signals (RZS1, RZS2) combined to form a time multiplex signal (MS1), the power of half the fundamental made of the multiplex signal (MS1) is measured and the phase difference is controlled such that its power assumes a minimum.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: December 25, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Christoph Glingener, Erich Gottwald
  • Patent number: 7313324
    Abstract: An accurate method of reporting “minutes of outage” for a SONET facility applies a set of business rules and hierarchical definitions to delete certain minutes that would otherwise be counted as “outages”. In particular, any outage minutes reported for a network element taken out of service for “planned maintenance” activities are removed prior to performing the final count. Additionally, outage minutes for a “lower level” element (such as, for example an OC1 element) that overlap in time with outage minutes reported for a “high level” element are likewise removed before the count is performed. The elimination of these non-service impacting outage minutes thus results in a more accurate reporting of the actual service impact of the counted outage minutes.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: December 25, 2007
    Assignee: AT&T Corp.
    Inventors: Hossein Eslambolchi, Kerrie L. Linker, Alexander Novokshanov, Harold Jeffrey Stewart, Denis Sergeyevich Yankin
  • Patent number: 7310480
    Abstract: An optical network, which includes edge and switching nodes, optically communicate information formatted into statistically multiplexed control and data bursts and/or metadata. Control bursts are transmitted prior to the data bursts to configure optical switches in selected switching nodes so that the data bursts do not require O-E-O conversion. Each edge node consists of an adaptive PBS medium-access layer (MAC) component in order to achieve the transmission throughput improvement. The adaptive PBS MAC component enables the PBS data burst size to adapt to the TCP flow, allowing the PBS data burst to be transmitted immediately for the TCP flow experiencing TCP slow start. It performs a “deep” packet inspection of control packets coming back to the data source from the destination PBS network edge node to detect packet losses.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: December 18, 2007
    Assignee: Intel Corporation
    Inventors: Christian Maciocco, Shlomo Ovadia
  • Patent number: 7302178
    Abstract: A pilot tone generator receives optical energy from an optical communication medium carrying a plurality of optical signals. Each optical signal carries data modulated at a unique wavelength and further modulated with a unique identification signal. The identification signal has an amplitude corresponding to an optical power of the associated optical signal. The pilot tone receiver detects each identification signal from the optical energy received and determines its corresponding amplitude. The pilot tone receiver calculates the optical power of each optical signal in the optical energy in response to the amplitude of the associated identification signal.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: November 27, 2007
    Assignee: Tellabs Operations, Inc.
    Inventors: John C. Carrick, Paul C. Talmadge, Eric B. Saint Georges, Stuart D. Brorson
  • Patent number: 7302177
    Abstract: Two multiplexing/demultiplexing sections of working and protection sides are prepared for each of a plurality of optical transmission devices which constitute a system, and the optical transmission devices are synchronized with each other to execute switching between the working and protection sides so that one of the working and protection sides can be selected for the entire system. Each expansion device collects optical line trouble information for each of the working and protection sides, and transmits to a main device. The main device integrates the information with trouble information transmitted from expansion devices per expansion device. The main device converts the integrated trouble information into point information, totals for each of the working and protection sides, compares, and decides which of the working and protection sides is to be selected.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 27, 2007
    Assignee: Fujitsu Limited
    Inventor: Junichi Moriyama
  • Patent number: 7302189
    Abstract: It is an object of the present invention to provide an optical component provided with a demultiplexing function capable of reducing an insertion loss and downsizing, and a wavelength dispersion compensator using such an optical component.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 27, 2007
    Assignee: Fujitsu Limited
    Inventor: Yuichi Kawahata
  • Patent number: 7292788
    Abstract: A laser communications system includes a wide-field sensor, configured to detect a first set of laser communications sources within a first field of view, a narrow-field sensor includes a tracking portion and a control portion configured to receive laser communications from a second set of laser communications sources within a second field of view, wherein the first field of view is larger than the second field of view, and wherein the second set of laser communications sources comprises at least a first source and a second source, and a redirection unit coupled to the narrow-field sensor configured to position the second field of view within the first field of view wherein the first receiving element is positioned in response to the first positioning signal for the first receiving element, and the second receiving element is positioned in response to the first positioning signal for the second receiving element.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: November 6, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Kenneth J. Triebes, Michael Enoch, Larry H. Capots