Patents Examined by Kevin Bernatz
  • Patent number: 9558776
    Abstract: A product such as a magnetic recording tape, according to one embodiment, includes a flexible magnetic media having a substrate, a magnetic recording layer having cobalt therein, and an at least partially polycrystalline coating above the magnetic recording layer. A product according to another embodiment includes a flexible magnetic media having a substrate, a magnetic recording layer having cobalt therein, and coating above the magnetic recording layer. The coating includes a ceramic material.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: January 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Gary M. Decad, Calvin S. Lo
  • Patent number: 9558777
    Abstract: According to one embodiment, a magnetic recording medium includes: a substrate, a seed layer positioned above the substrate, and a magnetic recording layer structure positioned above the seed layer. The magnetic recording layer structure includes: a first magnetic recording layer having a plurality of FePtCu magnetic grains and a first segregant, and a second magnetic recording layer positioned above the first magnetic recording layer, the second magnetic recording layer having a plurality of FePt magnetic grains and a second segregant, where a Curie temperature of the first magnetic recording layer is lower than a Curie temperature of the second magnetic recording layer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 31, 2017
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Shikha Jain, Oleksandr Mosendz, Hans J. Richter, Dieter K. Weller
  • Patent number: 9548073
    Abstract: Systems and methods for providing high performance soft magnetic underlayers for magnetic recording media are described. One such magnetic recording medium includes a substrate, an amorphous soft magnetic underlayer including CoFeMoNb on the substrate, where an atomic percent of the Mo is greater than about 8 and an atomic percent of the Nb is greater than about 9, and a magnetic recording layer on the soft magnetic underlayer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 17, 2017
    Assignee: WD Media, LLC
    Inventors: Iwao Okamoto, Debashish Tripathy, Fei Qin
  • Patent number: 9548074
    Abstract: A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic coercivity Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: January 17, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Shaoping Li, Kaizhong Gao, Lei Wang, Wenzhong Zhu, Xiaobin Wang
  • Patent number: 9542961
    Abstract: Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 10, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Carolyn Pitcher Van Dorn, Thomas Roy Boonstra, Eric Walter Singleton, Shaun Eric McKinlay
  • Patent number: 9516747
    Abstract: The present invention provides a substrate for suspension that includes a first structural part including a metal supporting substrate, an insulating layer, a wiring layer, and a cover layer, and a second structural part formed so as to extend continuously from the first structural part and has no metal supporting substrate. A position of an edge of an upper surface of the insulating layer coincides with a position of an edge of the lower surface of the cover layer or the position of the edge of the upper surface of the insulating layer is positioned on a side closer to the wiring layer than to the position of the edge of the lower surface of the cover layer at a boundary region between the first structural part and the second structural part.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: December 6, 2016
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Yoichi Miura, Tsuyoshi Yamazaki
  • Patent number: 9508373
    Abstract: Provided are an element structure in which a magnetic layer has a high magnetic anisotropy constant and saturated magnetization properties in a thickness of 1.5 nm or less, and a magnetic device that uses the element structure. A BCC metal nitride/CoFeB/MgO film structure that uses a nitride of a BCC metal as a seed layer is fabricated. The nitride amount in the BCC metal nitride is preferably less than 60% in terms of volume ratio based on 100% BCC metal. It is thereby possible to readily obtain a perpendicularly magnetized film having the magnetic properties that the perpendicular magnetic anisotropy is 0.1×106 erg/cm3 or more and the saturated magnetization is 200 emu/cm3 or more, even when the thickness of the magnetic layer is 0.3 nm or more and 1.5 nm or less.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 29, 2016
    Assignee: National Institute for Materials Science
    Inventors: Masamitsu Hayashi, Sinha Jaivardhan, Masaya Kodzuka, Tomoya Nakatani, Yukiko Takahashi, Takao Furubayashi, Seiji Mitani, Kazuhiro Hono
  • Patent number: 9502065
    Abstract: Various magnetic stack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 22, 2016
    Assignee: Seagate Technology LLC
    Inventors: KaiChieh Chang, Xiaobin Zhu, Yinfeng Deng, Ganping Ju, Timothy J. Klemmer, Yukiko Kubota, Thomas P. Nolan, YingGuo Peng, Jan-Ulrich Thiele, Qihong Wu
  • Patent number: 9495990
    Abstract: Hard magnetic exchange-coupled composite structures and perpendicular magnetic recording media including the hard magnetic exchange-coupled composite structures, include a ferrite crystal grain and a soft magnetic metal thin film bounded to the ferrite crystal grain by interfacial bonding on an atomic scale and having a thickness of about 5 nm or less, wherein a region of the soft magnetic metal thin film adjacent to an interface with the ferrite crystal grain includes an amorphous soft magnetic metal film.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 15, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-min Kang, Kyung-han Ahn, Sang-mock Lee
  • Patent number: 9472752
    Abstract: Enhanced Hc and Hk in addition to higher thermal stability up to at least 400° C. are achieved in magnetic devices by adding dusting layers on top and bottom surfaces of a spacer in a synthetic antiferromagnetic (SAF) structure to give a RL1/DL1/spacer/DL2/RL2 reference layer configuration where RL1 and RL2 layers exhibit perpendicular magnetic anisotropy (PMA), the spacer induces antiferromagnetic coupling between RL1 and RL2, and DL1 and DL2 are dusting layers that enhance PMA. Dusting layers are deposited at room temperature to 400° C. RL1 and RL2 layers are selected from laminates such as (Ni/Co)n, L10 alloys, or rare earth-transition metal alloys. The reference layer may be incorporated in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Dusting layers and a similar SAF design may be employed in a free layer for Ku enhancement and to increase the retention time of a memory cell for STT-MRAM designs.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: October 18, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yu-Jen Wang, Witold Kula, Ru-Ying Tong, Guenole Jan
  • Patent number: 9466789
    Abstract: Enhanced Hc and Hk in addition to higher thermal stability to 400° C. are achieved in magnetic devices by adding dusting layers on top and bottom surfaces of a spacer in a synthetic antiferromagnetic (SAF) structure to give a RL1/DL1/spacer/DL2/RL2 reference layer configuration where RL1 and RL2 layers exhibit perpendicular magnetic anisotropy (PMA), the spacer induces antiferromagnetic coupling between RL1 and RL2, and DL1 and DL2 are dusting layers that enhance PMA. Dusting layers are deposited at room temperature to 400° C. RL1 and RL2 layers are selected from laminates such as (Ni/Co)n, L10 alloys, or rare earth-transition metal alloys. The reference layer may be incorporated in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. A transition layer such as CoFeB/Co may be formed between the RL2 reference layer and tunnel barrier layer in a bottom spin valve design.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: October 11, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yu-Jen Wang, Witold Kula, Ru-Ying Tong, Guenole Jan
  • Patent number: 9460768
    Abstract: Cross point array magnetoresistive random access memory (MRAM) implementing spin hall magnetic tunnel junction (MTJ)-based devices and methods of operation of such arrays are described. For example, a bit cell for a non-volatile memory includes a magnetic tunnel junction (MTJ) stack disposed above a substrate and having a free magnetic layer disposed above a dielectric layer disposed above a fixed magnetic layer. The bit cell also includes a spin hall metal electrode disposed above the free magnetic layer of the MTJ stack.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 4, 2016
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Dmitri E. Nikonov, Ian A. Young
  • Patent number: 9460737
    Abstract: The use of supermalloy-like materials for the side and top shields of a magnetic bit sensor is shown to provide better shielding protection from stray fields because of their extremely high permeability.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: October 4, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yewhee Chye, Kunliang Zhang, Min Li
  • Patent number: 9454984
    Abstract: An information recording medium glass substrate and an information recording medium are provided in which a first roll-off variation and a second roll-off variation fall within the following ranges: 180 ??first roll-off variation?990 ? (condition 1) and 650 ??second roll-off variation?3700 ? (condition 2).
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: September 27, 2016
    Assignee: HOYA CORPORATION
    Inventor: Takeshi Endo
  • Patent number: 9450171
    Abstract: A thin film piezoelectric element of the present invention includes a substrate and a piezoelectric thin film stack formed on the substrate. The piezoelectric thin film stack includes a top electrode layer, a bottom electrode layer and a piezoelectric layer sandwiched between the top electrode layer and the bottom electrode layer, wherein the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer whose compositions have different phase structures. The present invention can obtain high piezoelectric constants, enhanced coercive field strength and good thermal stability, thereby enabling larger applied field strength without depolarization and achieving a large stroke for its applied device.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: September 20, 2016
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Wei Xiong, Panjalak Rokrakthong, Kenjiro Hata, Kazushi Nishiyama, Daisuke Iitsuka, Atsushi Iijima
  • Patent number: 9449618
    Abstract: A microwave assisted magnetic recording system includes a write pole that generates a write magnetic field, an element that generates a radio frequency assist magnetic field, and a recording medium that moves relative to the write pole. The recording medium is exposed to the radio frequency assist magnetic field before it is exposed to the write magnetic field. One possible element that generates the radio frequency assist magnetic field is an assist wire placed perpendicular to the write pole. Alternatively, the assist wire can be placed parallel to the write pole so that its radio frequency assist magnetic field couples with the write pole, which in turn generates its own coupled radio frequency magnetic field along with the write magnetic field.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 20, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Kirill Aleksandrovich Rivkin, Ned Tabat
  • Patent number: 9443546
    Abstract: A magnetic tape produced by cutting a magnetic sheet with a wide breadth into a tape having a predetermined width using a cutting device, in which the magnetic sheet has a magnetic layer containing magnetic powder and a hinder formed on one surface of a non-magnetic substrate having a thickness of 4 ?m or less, and a center line average height (Ra) along a roughness curve of a cut edge of the magnetic tape is from 0.08 to 0.25 ?m.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: September 13, 2016
    Assignee: HITACHI MAXELL, LTD.
    Inventor: Tetsutaro Inoue
  • Patent number: 9443544
    Abstract: A magnetic stack includes multiple granular layers, at least one of the multiple granular layers is a magnetic layer that includes exchange coupled magnetic grains separated by a segregant having Ms greater than 100 emu/cc. Each of the multiple granular layers have anisotropic thermal conductivity.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 13, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Yingguo Peng, Jan-Ulrich Thiele, Ganping Ju, Thomas Patrick Nolan, Yinfeng Ding, Alexander Qihong Wu
  • Patent number: 9437224
    Abstract: A stack having a seed layer structure with a first part having a first cross-track width and a free layer deposited over the seed layer structure and with a second cross-track width, wherein the first cross-track width is greater than the second cross-track width. In one implementation, the seed layer structure further comprises an antiferromagnetic (AFM) layer and a synthetic antiferromagnetic (SAF) layer. In one alternate implementation, the cross-track width of the seed layer structure is substantially equal to the combined cross-track width of the free layer and cross-track width of two permanent magnets.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: September 6, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Eric Walter Singleton, Jae-Young Yi, Konstantin Nikolaev, Victor Boris Sapozhnikov, Stacey Christine Wakeham, Shaun Eric McKinlay
  • Patent number: 9437358
    Abstract: A soft magnetic exchange-coupled composite structure, and a high-frequency device component, an antenna module, and a magnetoresistive device including the soft magnetic exchange-coupled composite structure, include a ferrite crystal grain as a main phase and a soft magnetic metal thin film bound to the ferrite crystal grain by interfacial bonding on an atomic scale. A region of the soft magnetic metal thin film adjacent to an interface with the ferrite crystal grain includes a crystalline soft magnetic metal.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: September 6, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-min Kang, Kyung-han Ahn, Young-jae Kang, Sang-mock Lee