Patents Examined by Kevin E Yoon
  • Patent number: 11753694
    Abstract: A pulse current-assisted laser peen forming and hydrophobic surface preparing method for an aluminum alloy includes the following steps: placing a pretreated aluminum alloy onto a shock platform, where electrodes are respectively provided at two ends of the aluminum alloy, and flowing silicone oil covers a surface of the aluminum alloy; determining a laser energy; applying a high-frequency pulse current to the surface of the aluminum alloy through the electrodes, where a shot peening laser generates a laser beam according to the laser energy to shock the surface of the aluminum alloy, and under an action of an electrical pulse and laser shock, the aluminum alloy shows a bent arc-shaped surface, with a shock surface forming a porous micro-nano multi-stage surface; and performing chemical modification on the shock surface of the aluminum alloy to reduce a surface energy of the material, thereby obtaining a super-hydrophobic arc-shaped aluminum alloy surface.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: September 12, 2023
    Assignee: JIANGSU UNIVERSITY
    Inventors: Jianzhong Zhou, Yanqiang Gou, Li Li, Yu Zhang, Xiankai Meng, Shu Huang, Gaoqiang Jiang, Pengfei Li, Xv Feng
  • Patent number: 11752550
    Abstract: A method of manufacturing a sized powder metal component having improved fatigue strength. The method includes the sequential steps of solutionizing a sintered powder metal component and quenching the sintered powder metal component, sizing the sintered powder metal component to form a sized powder metal component, re-solutionizing the sized powder metal component, and ageing the sized powder metal component. The sized powder metal component made by this method, in which the component is re-solutionized between sizing before ageing, can exhibit exceptional improvements in fatigue strength compared to components prepared similarly but that are not re-solutionized.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 12, 2023
    Assignee: GKN Sinter Metals, LLC
    Inventors: Donald Paul Bishop, Matthew D. Harding, Richard L. Hexemer, Jr., Ian W. Donaldson
  • Patent number: 11753695
    Abstract: A device and a method for continuous temperature gradient heat treatment of a rod-shaped material are disclosed. The furnace body of the device includes an upper heating zone and a lower heating zone inside, which are independently controlled in temperature by means of an upper heating power supply and a lower heating power supply. Moreover, both the upper heating zone and the lower heating zone are closed heating zones. The closed heat insulation plates could prevent heat loss and ensure precise temperature control of the upper heating zone and the lower heating zone. In the device, a vacuum pumping equipment is included; an annular radiation screen is configured between the upper heating zone and the lower heating zone, and the rod-shaped material is not in contact with the annular radiation screen The rod-shaped material conducts one-dimensional heat transfer along the axial direction.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: September 12, 2023
    Assignee: Northwestern Polytechnical University
    Inventors: Taiwen Huang, Lin Liu, Min Guo, Haijun Su, Jun Zhang, Wenchao Yang, Zheliang Liu, Yinuo Guo, Huating Chang, Hui Shen, Shaoying Li
  • Patent number: 11752543
    Abstract: A screw smelting machine melts raw materials with a different chemical ratio in a mixing funnel in a feeding order to prevent the long-range diffusion of a melt, and controls outflow at a suitable speed. A centrifugal casting machine solidifies the melt with the ingredients gradient varying into a radial ingredient gradient material by a centrifugal casting style. A temperature sensor monitors temperature of an outer surface of a centrifuge cavity of the centrifugal casting machine during centrifugal casting, and transmits the temperature to a control platform. The control platform determines an optimal flow rate of the melt at an end of screw rod according to ingredient gradient of ingredient radial-gradient pipe materials and a thickness of each component gradient material required with preparation, in combination with a real-time data fed back from the temperature sensor, and feeds back to a feeding end.
    Type: Grant
    Filed: November 25, 2021
    Date of Patent: September 12, 2023
    Assignee: University of Science and Technology Beijing
    Inventors: Jingyuan Li, Shang Dai, Chen Cai, Mingfan Qi, Jinbo Gu, Jianxin Xie
  • Patent number: 11746394
    Abstract: A method for manufacturing a trunnion for a constant velocity joint, the trunnion having a plurality of journal units provided outside around a hub unit, the method including a first step of manufacturing the trunnion, a second step of thermally treating a rounded outer circumferential surface of the journal unit, and a third step of thermally treating a connection unit disposed between the journal unit and the hub unit and having a diameter smaller than that of the journal unit.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: September 5, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION, SEOHAN INDUSTRY CO., LTD., KOREA FLANGE CO., LTD
    Inventors: Jeong Lyul Park, Wonkew Ban, Hyun Ho Yim, Chang-Gu Lee, Min-Gyu Kim
  • Patent number: 11739392
    Abstract: A high-strength steel sheet having a tensile strength TS of 1320 MPa or more and excellent workability. The high-strength steel sheet has a chemical composition containing, by mass %, C: 0.20% or more and 0.40% or less, Si: 0.5% or more and 2.5% or less, Mn: more than 2.4% and 5.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 0.5% or less, N: 0.010% or less, and Fe and inevitable impurities. A microstructure of the steel sheet includes, in terms of area fraction with respect to the whole steel sheet microstructure, lower bainite in an amount of 40% or more and less than 85%, martensite including tempered martensite in an amount of 5% or more and less than 40%, retained austenite in an amount of 10% or more and 30% or less, and polygonal ferrite in an amount of 10% or less (including 0%).
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: August 29, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Yusuke Kimata, Yoshihiko Ono, Kenji Kawamura
  • Patent number: 11739403
    Abstract: A soft magnetic metal powder that has low coercivity Hcj and high saturation magnetic flux density Bs, and has high powder resistivity and high insulating performance is obtained. The soft magnetic metal powder is soft magnetic metal powder containing Fe. The soft magnetic metal powder has particles each including a soft magnetic metal portion and a coating portion coating the soft magnetic metal portion. The coating portion includes a first coating portion and a second coating portion. The first coating portion is closer to the soft magnetic metal portion than the second coating portion. The first coating portion and the second coating portion have oxides containing at least one element selected from Si, Fe, and B as a main component. The first coating portion includes amorphous material, the second coating portion includes crystals, and the second coating portion has a higher crystal content ratio than the first coating portion.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: August 29, 2023
    Assignee: TDK CORPORATION
    Inventors: Satoko Mori, Kazuhiro Yoshidome, Hiroyuki Matsumoto
  • Patent number: 11742126
    Abstract: An inductor includes a magnetic base body including soft magnetic metal particles containing iron, first and second external electrodes provided on the magnetic base body, and an internal conductor provided in the magnetic base body, with one end thereof electrically connected to the first external electrode and the other end thereof electrically connected to the second external electrode, the internal conductor extending linearly from the first external electrode to the second external electrode in plan view. The magnetic base body is configured so that a peak intensity ratio is 2 or more between a peak intensity of a first peak and a peak intensity of a second peak in a Raman spectrum obtained by using an excitation laser with a wavelength of 488 nm. The first peak is around a wave number of 712 cm?1, and the second peak is around a wave number of 1320 cm?1.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: August 29, 2023
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Shunta Ishiwata, Shinsuke Takeoka
  • Patent number: 11738388
    Abstract: A decompression path conductance factor calculation device 110 obtains a cavity pressure change characteristic representing a pressure change characteristic of a cavity portion 30 from an exhaust speed of a decompression device 70, a cavity conductance factor, an overflow conductance factor, a decompression path conductance factor, and respective volumes of inside spaces of a cavity portion 30, an overflow portion 50, and a decompression path 60, obtains a decompression path pressure change characteristic representing a pressure change characteristic of the decompression path 60 from the exhaust speed of the decompression device 70, the volume of the inside space of the decompression path 60, and the decompression path conductance factor, and obtains the decompression path conductance factor such that a difference between respective approximate curves representing the obtained cavity pressure change characteristic and the obtained decompression path pressure change characteristic becomes a threshold value or
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 29, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Nobuo Kawauchi, Satoru Kimura, Ryo Onishi, Gaku Kazama, Toshihide Sunada
  • Patent number: 11717890
    Abstract: An additive manufacturing apparatus includes: a chamber, including a front plate; a door, provided at an opening of the front plate; an irradiator; a gas supplier, supplying an inert gas to the chamber; and a gas discharger, discharging the inert gas from the chamber. The gas supplier includes a middle nozzle and a lower nozzle. The middle nozzle is provided so as to cross the opening when the door is closed, has one end swingably supported on the front plate, and swings independently of opening and closing of the door.
    Type: Grant
    Filed: May 22, 2022
    Date of Patent: August 8, 2023
    Assignee: Sodick Co., Ltd.
    Inventor: Katsutaka Muranaka
  • Patent number: 11718889
    Abstract: A method for producing a hot-dip galvanized steel sheet includes supplying humidified gas to the soaking zone 12 in a manner such that: in passes in which the steel sheet moves upward, the humidified gas is supplied from first humidified gas supply ports 40A to 40E provided at positions higher by 1.0 m or more and 5.0 m or less than the centers of lower hearth rolls 54 and overlapping the steel sheet in the passes when viewed from the side of the soaking zone; and in passes in which the steel sheet moves downward, the humidified gas is supplied from second humidified gas supply ports 42A to 42E provided at positions lower by 1.0 m or more and 5.0 m or less than the centers of the upper hearth rolls 52 and overlapping the steel sheet in the passes when viewed from the side of the soaking zone.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 8, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Gentaro Takeda, Hideyuki Takahashi, Tetsuya Iwata, Koji Sawamura
  • Patent number: 11717883
    Abstract: There is provided a cast strip manufacturing method including: supplying a molten steel stored in a tundish (18) to a molten steel pool portion (16) formed by a pair of rotating cooling rolls (11) and a pair of side dams via an immersion nozzle (20); and forming and growing a solidified shell on a circumferential surface of the cooling roll (11) to manufacture a cast strip (1), in which a Si additive is added to the molten steel in the tundish (18), a Si concentration of the molten steel is adjusted to be within a fixed range, and a temperature of the molten steel in the tundish (18) is controlled to be within a fixed range.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 8, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Naotsugu Yoshida
  • Patent number: 11707778
    Abstract: A method and apparatus for manufacturing an equiaxed crystal aluminum alloy cast ingot by using additive manufacturing and rapid solidification techniques are provided. The apparatus comprises: a metal heating mechanism and a negative pressure cooling mechanism. The metal heating mechanism is located above the negative pressure cooling mechanism and is connected thereto by a nozzle. The negative pressure cooling mechanism comprises a vacuum chamber having an air inlet hole and an air outlet hole, and a three-dimensional moving ingot mechanism disposed inside the vacuum chamber. The three-dimensional moving ingot mechanism comprises a moving ingot and a two-dimensional moving platform vertically connected to the moving ingot. A water cooling mechanism is disposed outside the moving ingot, and the moving ingot is driven by a precision motor to precisely move up and down.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: July 25, 2023
    Assignee: SHANGHAI JIAOTONG UNIVERSITY
    Inventors: Jiao Zhang, Baode Sun, Qing Dong
  • Patent number: 11708629
    Abstract: An alloy composition is provided. The alloy composition includes silicon (Si) at a concentration of greater than or equal to about 0.55 wt. % to less than or equal to about 0.75 wt. %, magnesium (Mg) at a concentration of greater than or equal to about 0.55 wt. % to less than or equal to about 0.75 wt. %, chromium (Cr) at a concentration of greater than or equal to about 0.15 wt. % to less than or equal to about 0.3 wt. %, and a balance of the alloy composition being aluminum (Al). The alloy composition has an intermetallic phase content of less than or equal to about 3 wt. %. Methods of preparing the alloy composition and of processing the alloy composition are also provided.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: July 25, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Arianna T. Morales, Raja K. Mishra, Anil K. Sachdev
  • Patent number: 11708619
    Abstract: The present disclosure relates to a method for reducing and homogenizing residual stress of a component, which comprises: detecting stress value(s) of regulation portion(s) of the component; placing the component in a container containing a fluid medium so as to immerse the component in the fluid medium; emitting, by an acoustic wave generator, an elastic wave to the fluid medium in a manner of emitting towards the regulation portion(s) of the component, and determining an emitting period of time and a frequency of the elastic wave based on the stress value(s); returning to the step S1 when the emitting period of time has elapsed, until the stress value(s) is stable. The method and the device solve the problems that it is difficult to reduce and homogenize the residual stress on high-precision machined components, complex structural components, thin-walled structural components, and low-stiffness components.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: July 25, 2023
    Assignee: BEIJING INSTITUTE OF TECHNOLOGY
    Inventors: Chunguang Xu, Peng Yin, Yuren Lu, Jianfeng Song, Peilu Li, Dezhi Li, Zhaowei Miao
  • Patent number: 11701705
    Abstract: A diffusion component for impregnating molten steel with a gas includes a barrier having a first side and a second side, a through-hole formed within the barrier, the through-hole connecting the first side to the second side, and a porous element arranged within the through-hole such that the flow of molten steel passes over the porous element. At least one flow disrupter is arranged relative to the porous element and configured to promote non-laminar flow of molten steel passing through the through-hole.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: July 18, 2023
    Assignee: HarbisonWalker International, Inc.
    Inventor: Mark Smith
  • Patent number: 11701819
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. The two-dimensional energy patterning system may be used to control the rate of cooling experienced by each successive additive layer. Accordingly, the system may be used to heat treat the various additive layers.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: July 18, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Martin Eberhard
  • Patent number: 11702725
    Abstract: A bonding structure includes: a plurality of carbon nanotubes; a first bonded member, and a first metal sintered compact bonding first end portions of the plurality of carbon nanotubes and the first bonded member, wherein the first metal sintered compact enters spaces between the first end portions of the plurality of carbon nanotubes, and bonds to the plurality of carbon nanotubes while covering side faces and end faces of the first end portions of the plurality of carbon nanotubes.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 18, 2023
    Assignee: FUJITSU LIMITED
    Inventors: Shinichi Hirose, Daiyu Kondo
  • Patent number: 11697152
    Abstract: Vitriforming is a method for forming material into complex geometries within a vitreous substance. Liquid material is formed inside the vitreous substance through external forces applied to the vitreous forming medium. This technique can be broken down into four categories of operations: encasement, setup, forming, and extraction. All operations involve a forming medium, and a workpiece. The workpiece can be composed of any material so long as the forming medium is temperature, viscosity, and chemically compatible. The vitreous forming medium translates outside forces into the workpiece to create various geometries. This forming medium can remain a part of the final assembly or get extracted after forming takes place. Workpiece geometry is affected by forming tool geometry, initial setup, heat, and material properties. This process can be used as a fast, efficient means of forming metal or other materials with unique abilities to control material combinations, surface chemistry, texture, and overall geometry.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 11, 2023
    Inventor: Bryan Kekst Brown
  • Patent number: 11691926
    Abstract: A method is provided for producing a microfiber-reinforced high-strength concrete, comprising a cement matrix with a microfiber addition. The fiber elements have a shape-memory alloy. The method has at least the following steps: training a fiber shape of the fiber elements at a temperature above a transition temperature, wherein the fiber shape allows the fiber elements to latch; cooling the trained fiber elements; plastically deforming the fiber elements from the trained fiber shape into an intermediate form by means of which the fiber elements are prevented from latching; introducing the fiber elements into the cement matrix in order to form a fresh concrete; and casting the fresh concrete and heating the fresh concrete to the transition temperature such that the fiber elements reform into the fiber shape, thereby latching the fiber elements. The invention additionally relates to a microfiber-reinforced concrete which is produced using such a method.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 4, 2023
    Assignee: Universitat Kassel
    Inventors: Thomas Niendorf, Philipp Krooss, Bernhard Middendorf, Alexander Wetzel, Werner Seim, Ekkehard Fehling, Hans-Peter Heim