Patents Examined by Kevin H Sprenger
  • Patent number: 11114933
    Abstract: System and method for protecting a power converter. An example system controller for protecting a power converter includes a signal generator, a comparator, and a modulation and drive component. The signal generator is configured to generate a threshold signal. The comparator is configured to receive the threshold signal and a current sensing signal and generate a comparison signal based on at least information associated with the threshold signal and the current sensing signal, the current sensing signal indicating a magnitude of a primary current flowing through a primary winding of a power converter. The modulation and drive component is coupled to the signal generator.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: September 7, 2021
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Chao Yao, Yunchao Zhang, Yuan Lin, Zhiqiang Sun, Lieyi Fang
  • Patent number: 11108322
    Abstract: A multi-phase switch-mode power supply to control an output in two possible modes is disclosed. A first mode can be applied for normal load conditions. In the first mode, control is achieved using an error signal based on a difference between an output voltage and a set voltage level. In heavy load conditions a load attempts to draw too more power than the switch-mode power supply can provide. As a result, control of the output voltage is lost and the current of each phase becomes saturated at a limit. When this condition is detected, a second mode can be applied. In the second mode, control is achieved using an error signal based on a difference between an output current and a set current level. The set current level is chosen so that the current of each phase is no longer saturated and control of the output current is maintained.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: August 31, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Han Zou
  • Patent number: 11095228
    Abstract: An active clamp circuit includes an active clamp capacitor coupled in series with an active clamp switch and an active clamp controller circuit to receive an active clamp switch current that passes through the active clamp switch and to control the active clamp switch based on the received active clamp switch current. The active clamp controller circuit is configured to enable the active clamp switch based on a first amplitude comparison, the first amplitude comparison being based on the active clamp switch current. The active clamp controller circuit is configured to disable the active clamp switch based on a second amplitude comparison and a third amplitude comparison, the second amplitude comparison and the third amplitude comparison being based on the active clamp switch current.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 17, 2021
    Assignee: Appulse Power Inc.
    Inventor: Aleksandar Radic
  • Patent number: 11095223
    Abstract: Methods and systems for ripple suppression in multi-phase buck converters may comprise a buck converter for providing an output DC voltage with controlled ripple current. The buck converter may include one or more main buck converter stages with coupled outputs and one or more harmonic suppression buck converter stages in parallel with the one or more main buck converter stages. The one or more suppression buck converter stages may provide suppression currents at the coupled outputs to cancel ripple currents generated in the one or main buck converter stages. Each of the one or more main buck converter stages and each of the one or more suppression buck converter stages may include a stacked transistor pair with an inductor at an output. A drain terminal of one transistor of each transistor pair in the one or more main buck converter stages may be biased at a first supply voltage.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 17, 2021
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Shantha Murthy Prem Swaroop, Vinit Jayaraj
  • Patent number: 11079424
    Abstract: Example embodiments of the invention include a powdered core bead body configured to become an inductive impedance to current signals in a power wire with high frequencies. The signals are detectable by a high frequency voltage sensor, which is configured to output an arc fault tripping indication to an arc fault tripping circuit. The bead body includes a magnetic flux-density sensing device embedded in an air cavity of the bead body, having a magnetic field sensing surface oriented substantially perpendicular to the circumferential periphery of the bead body. The bead body is configured to provide measurable magnetic flux through the magnetic flux-density sensing device, for currents in the power wire having low frequencies. The measurable magnetic flux is detectable by a low frequency magnetic flux-density sensing device, to output a low frequency current measurement for power metering devices or to determine power consumption within a protected branch.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: August 3, 2021
    Assignee: Schneider Electric USA, Inc.
    Inventors: Andi Jakupi, Robert Isaacson, Carlton R. Rodrigues
  • Patent number: 11075505
    Abstract: An ionizer includes a discharge needle, a discharge needle holder holding the discharge needle, and a carrying air jet mechanism jetting out ion-carrying air toward a charge cancellation target. The carrying air jet mechanism is disposed at a position adjacent to the discharge needle holder, and it includes a drive nozzle having a drive air jet port, and a diffuser disposed in front of the drive nozzle with an ambient air suction gap interposed therebetween. A carrying air flow hole is formed inside the diffuser to be coaxial with the drive air jet port, and a carrying air jet port from which the carrying air is jetted out is formed at a fore end of the carrying air flow hole.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 27, 2021
    Assignee: SMC CORPORATION
    Inventors: Takashi Yasuoka, Suguru Konno, Gen Tsuchiya
  • Patent number: 11070137
    Abstract: A resonant core power supply includes a core with excitation, resonant, and load windings where the resonant winding is coupled to a tank circuit and a controller manipulates the phase, amplitude and waveform of an excitation signal applied to the excitation winding.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: July 20, 2021
    Inventor: Patrick Carden
  • Patent number: 11070130
    Abstract: The systems and methods describe a buck regulator, on-chip inductor and/or power management circuits. A buck regulator circuit can include a first switch and a second switch connected with a resonant switching circuit. The resonant switching circuit includes an inductor, a first capacitor and a second capacitor configured to reduce a switching power from a switching frequency of the buck regulator.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: July 20, 2021
    Assignee: Northwestern University
    Inventors: Jie Gu, Tianyu Jia
  • Patent number: 11070132
    Abstract: A voltage regulator circuit comprises a switching circuit, a dynamic clamp circuit, and a comparison circuit. The switching circuit adjusts a switching duty cycle to produce a regulated output voltage using an error signal representative of a difference between a target voltage value and the output voltage. The dynamic clamp circuit determines a maximum peak inductor current command value using the output voltage and an input voltage of the voltage regulator circuit. The comparison circuit sets a maximum peak inductor current value using the maximum peak inductor current command value and a slope compensation current, wherein the maximum peak inductor current value is constant for different values of output voltage. The comparison circuit compares a sensed inductor current to a peak inductor current value and enables switching of the voltage regulator system according to the comparison.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: July 20, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Hai Chen, Gregory J. Hughes
  • Patent number: 11063774
    Abstract: An apparatus comprises an Ethernet port including high-side transformers and low-side transformers. High-side current paths supply high-side currents form a high voltage rail to high-side center taps of the high-side transformers. Low-side current paths supply or do not supply low-side currents from a low voltage rail to low-side center taps of the low-side transformers, and convert the low-side currents to sense voltages. A controller configures the low-side current paths to either supply or not supply the low-side currents to the low-side center taps when none of the sense voltages exceed a voltage threshold representative of an overcurrent threshold or when at least one of the sense voltages exceeds the voltage threshold, respectively. A current monitor injects additional current into the low-side current paths only when at least one of the high-side currents exceeds the overcurrent threshold.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: July 13, 2021
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Paolo Sironi, Sushin Suresan Adackaconam, Joel Goergen, Roberto Gianella
  • Patent number: 11034314
    Abstract: In a vehicular power supply system according to an embodiment, passage current of a power MOSFET of an IPD of a sub power distribution box monitored by a sub controller of the sub power distribution box is transmitted from the sub controller to a main controller of a main power distribution box. When energy storage amount of a load-based path calculated by integrating the passage current received by the main controller exceeds a predetermined value which is a overcurrent state, the main controller determines that the load-based path is in the overcurrent, and notifies the fact from the main controller to the sub controller. The sub controller switches the power MOSFET of the IPD of the load-based path set to the overcurrent by the notification to a non-conduction state to interrupt the energization of the load-based path.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: June 15, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Koji Ikegaya, Hideo Takahashi, Takafumi Toda
  • Patent number: 11031767
    Abstract: One example includes a power relay system. The system includes a circuit breaker configured, when triggered, to provide an open circuit in a power line configured to conduct a current between a power grid point-of-interconnect (POI) and a power generator system. The system also includes a power controller configured to monitor the current and to generate a dynamic current threshold based on the current, the power controller being further configured to compare the current with the dynamic current threshold and to trigger the circuit breaker based on a difference of the current relative to the dynamic current threshold to set an arc flash incident energy level of the power generator system to less than or equal to a predetermined safety level.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 8, 2021
    Assignee: FLORIDA POWER & LIGHT COMPANY
    Inventor: Jon D Lawrence
  • Patent number: 11029740
    Abstract: There is to provide a power conversion device capable of estimating a junction temperature of a power transistor at a high accuracy. The control device includes a temperature estimation unit and controls the on and off of the power transistor through a driver. The voltage detection circuit detects the inter-terminal voltage of a source and drain terminals during the on-period of the power transistor. The temperature estimation unit previously holds the correlation information between the inter-terminal voltage and inter-terminal current of the source and drain terminals and the junction temperature, and estimates the junction temperature, based on the inter-terminal voltage detected by the voltage detection circuit, the known inter-terminal current, and the correlation information.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 8, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shunichi Kaeriyama, Norio Kido
  • Patent number: 11018529
    Abstract: An apparatus for inductive power transfer (“IPT”) includes an active bridge section with input terminals that receive power from a constant current source, where the active bridge section operates at a fixed switching frequency, a primary resonant capacitor connected in series with an output terminal of the active bridge section, and a primary IPT coil connected in series with the primary resonant capacitor, where power is transferred wirelessly between the primary IPT coil and a secondary IPT coil, and the secondary IPT coil is connected in series with a secondary resonant capacitor, which is connected in series with an output rectifier section that receives power from the secondary IPT coil and comprising output terminals for connection to a load. The apparatus includes a controller that regulates output voltage to the load, where the controller regulates output voltage to the load by controlling switching of the active bridge section.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 25, 2021
    Inventors: Anindya Chitta Bagchi, Tarak Saha, Abhilash Kamineni, Regan A. Zane
  • Patent number: 11005370
    Abstract: The disclosure provides a multi-phase converter. The multi-phase converter includes a controller and one or more switches. The one or more switches are coupled to the controller, and configured to receive an input voltage. A switch of the one or more switches is activated by the controller in a predefined phase of N phases in the multi-phase converter, where N is a positive integer. A processing unit is coupled to the controller and estimates a number of phases to be activated based on a load current. The processing unit also stores a threshold current limit corresponding to each phase of the N phases based on the input voltage and a switching frequency.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Anandha Ruban Tt, Preetam Charan Anand Tadeparthy, Vikram Gakhar, Muthusubramanian Nv
  • Patent number: 11005386
    Abstract: A power converter circuit includes a plurality of input nodes, an output, a plurality of switch and inductor circuits, a plurality of rectifier circuits, a first capacitor network, and a second capacitor network. Each of the plurality of switch and inductor circuits is connected between a respective pair of the plurality of input nodes, and each of the plurality of rectifier circuits is connected between a respective one of the plurality of switch and inductor circuits and the output. The first capacitor network includes at least two capacitors connected between at least one of the plurality of input nodes and the output, and the second capacitor network includes at least one capacitor and is connected to the output. A capacitance of the at least one capacitor of the second capacitor network is greater than a capacitance of each of the at least two capacitors of the first capacitor network.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: May 11, 2021
    Assignee: Infineon Technologies Austria AG
    Inventor: Kennith Kin Leong
  • Patent number: 11005361
    Abstract: A control circuit is configured to control a power factor correction (PFC) pre-regulator including a power switch and being configured to operate in a transition mode of operation and a valley-skipping mode of operation. The control circuit generates a drive signal to control a switching of the power switch based on a current threshold. A current threshold generator in the control circuit is configured to modulate the current threshold as a function of a number of valleys skipped in the valley-skipping mode of operation.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 11, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe Scappatura, Alberto Bianco, Francesco Ciappa
  • Patent number: 11005355
    Abstract: An apparatus is disclosed for improving zero voltage switching (“ZVS”) of a converter circuit such as an active clamp flyback converter. The apparatus includes a first timing circuit acting as the TD(L-H) optimizer, which uses the zero-crossing of the auxiliary winding voltage directly to adaptively vary the dead time. A second timing circuit acting as the TD(H-L) optimizer adaptively varies the dead time with a simple piece-wide linear function as an approximation of the complex optimal equation. A third timing circuit acting as the TDM optimizer contains a charge-pump circuit that adaptively adjusts the ON time of the clamp switch based on the zero-voltage detection of switching node voltage and feed-forwards the input voltage signal to enhance tuning speed so that the correct amount of negative magnetizing current is generated to improve zero voltage switching.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 11, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Pei-Hsin Liu, Richard Lee Valley
  • Patent number: 11005356
    Abstract: A power control device for controlling driving of an LLC resonant converter including a first switching element to one end of which an input voltage is applied, a second switching element of which one end is connected to the other end of the first switching element, and a primary winding and a resonant capacitor connected in series between a first connection node at which the first and second switching elements are connected together and the other end of the second switching element includes an on-timing controller that detects variation of a switching voltage detection signal based on a switching voltage appearing at the first connection node rising up to the input voltage and falling down to 0 V and that, based on the result of the detection, generates a high-side on-signal for turning on the first switching element and a low-side on-signal for turning on the second switching element.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: May 11, 2021
    Assignee: Rohm Co., Ltd.
    Inventors: Hiroki Kikuchi, Hiroyuki Hatano
  • Patent number: 10972011
    Abstract: The invention provides a series resonant LLC power converter unit to provide a plurality of power outputs. The power converter unit comprises a plurality of transformers arranged such that at least one primary winding of each transformer is connected in parallel and configured to provide a power output. An inductive element is positioned in parallel with a single primary winding selected from said plurality of transformers, wherein the inductive element and single primary winding restricts variation in inductance for said plurality of transformers and power outputs in operation.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 6, 2021
    Assignee: Excelsys Technologies Ltd.
    Inventors: Jonathan James Wilkinson, Diarmuid Hogan