Patents Examined by Krista Soderholm
  • Patent number: 9082634
    Abstract: A stack package includes a cover film, a first package having a first semiconductor chip which is attached to the cover film, a first adhesive member which is formed to seal the first semiconductor chip and a surface of the cover film, and a first circuit pattern which is disposed over the first adhesive member and electrically connected with the first semiconductor chip; a second package disposed over the first package, having a second semiconductor chip which is electrically connected with the first circuit pattern, a second adhesive member which is formed to seal the second semiconductor chip, and a second circuit pattern which is formed over the second adhesive member, and a via formed to pass through the second circuit pattern and the second adhesive member and to be electrically connected with the first circuit pattern and the second circuit pattern.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 14, 2015
    Assignee: SK Hynix Inc.
    Inventors: Hee-Min Shin, Cheol-Ho Joh, Eun-Hye Do, Ji-Eun Kim, Kyu-Won Lee
  • Patent number: 9070638
    Abstract: A semiconductor device includes a semiconductor substrate on which a structure portion is provided except a peripheral portion thereof, and has a laminated structure including low dielectric films and wiring lines, the low dielectric films having a relative dielectric constant of 3.0 or lower and a glass transition temperature of 400° C. or higher. An insulating film is formed on the structure portion. A connection pad portion is arranged on the insulating film and connected to an uppermost wiring line of the laminated structure portion. A bump electrode is provided on the connection pad portion. A sealing film made of an organic resin is provided on a part of the insulating film which surrounds the bump electrode. Side surfaces of the laminated structure portion are covered with the insulating film and/or the sealing film.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: June 30, 2015
    Assignee: TERA PROBE, INC.
    Inventors: Aiko Mizusawa, Osamu Okada, Takeshi Wakabayashi, Ichiro Mihara
  • Patent number: 9053968
    Abstract: A method of manufacturing a semiconductor package structure is provided. A supporting plate and multiple padding patterns on an upper surface of the supporting plate define a containing cavity. Multiple leads electrically insulated from one another are formed on the padding patterns, extend from top surfaces of the padding patterns along side surfaces to the upper surface and are located inside the containing cavity. A chip is mounted inside the containing cavity, electrically connected to the leads. A molding compound is formed to encapsulate at least the chip, a portion of the leads and a portion of the supporting plate, fill the containing cavity and gaps among the padding patterns, and exposes a portion of the leads on the top surface. The supporting plate is removed to expose a back surface of each padding pattern, a bottom surface of the molding compound and a lower surface of each lead.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: June 9, 2015
    Assignee: ChipMOS Technologies Inc.
    Inventor: Shih-Wen Chou
  • Patent number: 9035445
    Abstract: A method includes providing a substrate having a seal ring region and a circuit region, forming a seal ring structure over the seal ring region, forming a first frontside passivation layer above the seal ring structure, etching a frontside aperture in the first frontside passivation layer adjacent to an exterior portion of the seal ring structure, forming a frontside metal pad in the frontside aperture to couple the frontside metal pad to the exterior portion of the seal ring structure, forming a first backside passivation layer below the seal ring structure, etching a backside aperture in the first backside passivation layer adjacent to the exterior portion of the seal ring structure, and forming a backside metal pad in the backside aperture to couple the backside metal pad to the exterior portion of the seal ring structure. Semiconductor devices fabricated by such a method are also provided.
    Type: Grant
    Filed: September 23, 2012
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semicondutor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Hsin-Hui Lee, Wen-De Wang, Shu-Ting Tsai
  • Patent number: 9024448
    Abstract: A semiconductor package may include a circuit board chip having a through-hole, a semiconductor device mounted on the circuit board chip, and an encapsulant. The encapsulant encapsulates the semiconductor device, fills the through-hole and has an external pattern that is the complement of a mold within which the encapsulant was formed. The external pattern on one side of the package reflects a mold shape that retards the flow of encapsulant material relative to the flow of encapsulant material on the opposite side of the package.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Gwon Jang, Young-Lyong Kim, Ae-Nee Jang
  • Patent number: 8970033
    Abstract: A device includes a work piece, and a metal trace on a surface of the work piece. A Bump-on-Trace (BOT) is formed at the surface of the work piece. The BOT structure includes a metal bump, and a solder bump bonding the metal bump to a portion of the metal trace. The metal trace includes a metal trace extension not covered by the solder bump.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Chen, Yuh Chern Shieh, Tsung-Shu Lin, Han-Ping Pu, Jiun Yi Wu, Tin-Hao Kuo
  • Patent number: 8963317
    Abstract: A package includes a die, which includes a semiconductor substrate, a plurality of through-vias penetrating through the semiconductor substrate, a seal ring overlapping and connected to the plurality of through-vias, and a plurality of electrical connectors underlying the semiconductor substrate and connected to the seal ring. An interposer is underlying and bonded to the die. The interposer includes a substrate, and a plurality of metal lines over the substrate. The plurality of metal lines is electrically coupled to the plurality of electrical connectors. Each of the plurality metal lines has a first portion overlapped by the first die, and a second portion misaligned with the die. A heat spreader encircles the die and the interposer. A wire includes a first end bonded to one of the plurality of metal lines, and a second end bonded to the heat spreader.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jing-Cheng Lin
  • Patent number: 8963323
    Abstract: An apparatus 100 comprising a first substrate 130 having a first surface 125, a second substrate 132 having a second surface 127 facing the first surface and an array 170 of metallic raised features 170 being located on the first surface, each raised feature being in contact with the first surface to the second surface, a portion of the raised features being deformed via a compressive force 305.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 24, 2015
    Assignee: Alcatel Lucent
    Inventors: Roger Scott Kempers, Shankar Krishnan, Alan Michael Lyons, Todd Richard Salamon
  • Patent number: 8957531
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Patent number: 8952539
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Satyanarayana V. Nitta, Anthony D. Lisi, Qinghuang Lin
  • Patent number: 8928159
    Abstract: A device includes a substrate, and an alignment mark including a conductive through-substrate via (TSV) penetrating through the substrate.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing & Company, Ltd.
    Inventors: Hsin Chang, Fang Wen Tsai, Jing-Cheng Lin, Wen-Chih Chiou, Shin-Puu Jeng
  • Patent number: 8922024
    Abstract: Semiconductor packages including molding layer and methods of fabricating the same are provided. The method may include forming a bare package including a semiconductor chip on a package substrate and forming a molding layer surrounding the semiconductor chip on the package substrate while contacting an upper surface of the molding layer with a lower surface of a release film. The lower surface of the release film and the upper surface of the molding layer comprising uneven surfaces and the molding layer may expose an upper surface of the semiconductor chip.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minok Na, Okgyeong Park, Ji-Hyun Park
  • Patent number: 8921159
    Abstract: A method of manufacturing integrated circuit (IC) devices includes the steps of providing a first frame that has openings each having a perimeter with shaped notches, placing a first die in at least one of the openings, and placing a second frame over the first frame. The second frame has a first partial dam bar with a first shaped tip that fits into a first shaped notch of the first frame. The method also includes the step of placing a third frame over the second frame. The third frame has a second partial dam bars with a second shaped tip that fits into a second shaped notch of the first frame. Each perimeter and the respective first and second partial dam bars cooperate to form a continuous dam completely encircling the die within the respective opening.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: December 30, 2014
    Assignee: Linear Technology Corporation
    Inventor: David Alan Pruitt
  • Patent number: 8900928
    Abstract: The present invention include a semiconductor device and a method therefor, the method includes disposing a sheet-shaped resin at a side opposite to the chip mounting portion mounting semiconductor chips to be mounted on the chip mounting portion, and forming a resin sealing portion between the sheet-shaped resin and the chip mounting portion, to seal the semiconductor chips. According to an aspect of the present invention, it is possible to provide a semiconductor device and a fabrication method therefor, by which it is possible to reduce the size of the package and to prevent the generation of an unfilled portion in a resin sealing portion or a filler-removed portion or to prevent the exposure of wire from the resin sealing portion.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Spansion LLC
    Inventors: Koji Taya, Masanori Onodera
  • Patent number: 8895362
    Abstract: Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 25, 2014
    Assignee: Corning Incorporated
    Inventors: James Gregory Couillard, Christopher Paul Daigler, Jiangwei Feng, Yawei Sun, Lili Tian, Ian David Tracy
  • Patent number: 8872334
    Abstract: In a manufacturing method of a semiconductor device incorporating a semiconductor element in a multilayered wiring structure including a plurality of wiring layers and insulating layers, a semiconductor element is mounted on a silicon support body whose thickness is reduced to a desired thickness and which are equipped with a plurality of through-vias running through in the thickness direction; an insulating layer is formed to embed the semiconductor element; then, a plurality of wiring layers is formed on the opposite surfaces of the silicon support body in connection with the semiconductor element. Thus, it is possible to reduce warping which occurs in proximity to the semiconductor element in manufacturing, thus improving a warping profile in the entirety of a semiconductor device. Additionally, it is possible to prevent semiconductor elements from becoming useless, improve a yield rate, and produce a thin-type semiconductor device with high-density packaging property.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 28, 2014
    Assignee: NEC Corporation
    Inventors: Shintaro Yamamichi, Katsumi Kikuchi, Yoshiki Nakashima, Kentaro Mori
  • Patent number: 8871627
    Abstract: A semiconductor device includes a semiconductor substrate on which a structure portion is provided except a peripheral portion thereof, and has a laminated structure including low dielectric films and wiring lines, the low dielectric films having a relative dielectric constant of 3.0 or lower and a glass transition temperature of 400° C. or higher. An insulating film is formed on the structure portion. A connection pad portion is arranged on the insulating film and connected to an uppermost wiring line of the laminated structure portion. A bump electrode is provided on the connection pad portion. A sealing film made of an organic resin is provided on a part of the insulating film which surrounds the bump electrode. Side surfaces of the laminated structure portion are covered with the insulating film and/or the sealing film.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 28, 2014
    Assignee: Tera Probe, Inc.
    Inventors: Aiko Mizusawa, Osamu Okada, Takeshi Wakabayashi, Ichiro Mihara
  • Patent number: 8866311
    Abstract: The substrate includes a first dielectric layer, a first circuit pattern, a plurality of pillars and a second circuit pattern. The first dielectric layer has opposing first and second dielectric surfaces. The first circuit pattern is embedded in the first dielectric layer and defines a plurality of curved trace surfaces. Each of the pillars has an exterior surface adapted for making external electrical connection and a curved base surface abutting a corresponding one of the trace surfaces. The second circuit pattern is on the second dielectric surface of the first dielectric layer and electrically connected to the first circuit pattern.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: October 21, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Tien-Szu Chen, Kuang-Hsiung Chen, Sheng-Ming Wang, Hsiang-Ming Feng, Yen-Hua Kuo
  • Patent number: 8859420
    Abstract: A method of fabricating an interconnect element may include fabricating a metal layer that overlies a carrier layer and that includes a plurality of metal traces; providing a dielectric element to overlie the metal layer and the carrier layer; providing a plurality of metal posts; and removing the carrier layer to expose the first major surface of the dielectric element and the outer surfaces of the plurality of metal traces.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 14, 2014
    Assignee: Invensas Corporation
    Inventors: Kimitaka Endo, Norihito Masuda, Tomokazu Shimada
  • Patent number: 8853866
    Abstract: In a semiconductor device according to the present invention, a solder resist has a plurality of openings that expose electrodes. Solder bumps are formed in the openings and each have a solder ball portion protruding from the corresponding opening. The height of the openings is set to increase with increasing gap distance between the electrodes of an interposer substrate and board electrodes of a printed wiring board on which the semiconductor device is mounted. Thus, the solder bumps that correspond to sections where the gap distance is large can be increased in height, whereas the solder bumps that correspond to sections where the gap distance is small can be decreased in height, thereby avoiding the occurrence of defective joints caused by a reduction in size and thickness of the interposer substrate, as well as extending the lifespan of solder joints.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: October 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshitomo Fujisawa