Patents Examined by Lisa M. Caputo
  • Patent number: 11703410
    Abstract: An inclination sensor for determining an angle of inclination relative to the gravitational vector includes comprising a fluid container and a first pressure sensor pair configured to measure a hydrostatic pressure in the connecting fluid. Temperature sensors are assigned to the sensors. A processor is configured to determine: a relative height (h) in the direction of gravity between the pressure sensors, an angle of inclination with respect to the gravitational vector based on the determined relative height (h) and the fixed locations of the pressure sensors, and relative height in the direction of gravity and the angle of inclination, also based on the measured temperatures.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: July 18, 2023
    Assignee: HEXAGON TECHNOLOGY CENTER GMBH
    Inventors: Jürg Hinderling, Wolfgang Rebhandl, Jochen Scheja, Markus Wenk
  • Patent number: 11703400
    Abstract: A system is disclosed, including an interface to a DUT and a testing apparatus. The DUT includes a first plurality of temperature sensing circuits. The testing apparatus may store a plurality of control values. Each control value may depend on at least two calibration values of corresponding temperature sensing circuits of a second plurality of temperature sensing circuits. The testing apparatus may generate a plurality of calibration values for the DUT. Each calibration value corresponds to one of the first plurality of temperature sensing circuits. The testing apparatus may determine a plurality of test values for the DUT. The testing apparatus may calculate a probability value, and repeat generation of the plurality of calibration values upon determining that the probability value is less than a predetermined threshold value. The probability value corresponds to a likelihood that the plurality of calibration values is accurate.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 18, 2023
    Assignee: Oracle International Corporation
    Inventors: Venkatram Krishnaswamy, Sebastian Turullols
  • Patent number: 11698289
    Abstract: A method providing an increased signal-to-noise (SNR) characteristic for coherent distributed acoustic sensing (DAS) systems, the method employing fiber coils (microphones) made from sections of an optical sensing fiber that collect acoustic signals and uses multiple differential pairs of the microphones for signal averaging to improve the SNR. An analysis determines complex products (beating products) for a pair of locations that are part of a fiber microphone along the length of the optical sensing fiber that are used to determine a phase change in-between locations along the length of the optical sensing fiber.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: July 11, 2023
    Assignee: NEC Corporation
    Inventors: Junqiang Nochur Hu, Ting Wang, Shuji Murakami
  • Patent number: 11698290
    Abstract: Systems and methods for operating a distributed fiber optic sensing (DFOS)/distributed acoustic sensing (DAS) system include a length of optical sensing fiber suspended aerially by a plurality of utility poles and in optical communication with a DFOS interrogator/analyzer. The method includes operating the DFOS/DAS system while manually exciting more than one of the poles to obtain frequency response(s) of the excited poles; contrastively training a convolutional neural network (CNN) with the frequency responses obtained; classifying the utility poles using the contrastively trained CNN; and generating a profile map of the excited poles indicative of the classified utility poles.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: July 11, 2023
    Assignee: NEC Corporation
    Inventors: Shaobo Han, Yue Tian, Sarper Ozharar, Yangmin Ding, Ting Wang
  • Patent number: 11691151
    Abstract: Embodiments of the present invention provide systems and methods for tagging and acoustically characterizing containers.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: July 4, 2023
    Assignee: Labcyte Inc.
    Inventors: Eric Sackmann, Sammy Datwani, Stephen Hinkson
  • Patent number: 11690359
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for self-calibrating ultrasonic removal of sea lice. In some implementations, a method includes generating, by transducers distributed in a sea lice treatment station, a first set of ultrasonic signals, detecting a second set of ultrasonic signals in response to propagation of the first set of ultrasonic signals through water, determining propagation parameters of the sea lice treatment station based on the second set of ultrasonic signals that were detected, obtaining an image of a sea louse on a fish in the sea lice treatment station, determining, from the image, a location of the sea louse in the sea lice treatment station, and generating a third set of ultrasonic signals that focuses energy at the sea louse.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: July 4, 2023
    Assignee: X Development LLC
    Inventors: Grace Calvert Young, Matthew Aaron Knoll, Bryce Jason Remesch, Peter Kimball
  • Patent number: 11692806
    Abstract: A strain gauge includes a flexible resin substrate; a functional layer formed of a metal, an alloy, or a metal compound, directly on one surface of the substrate; a resistor formed of a film including Cr, CrN, and Cr2N, on one surface of the functional layer; and an insulating resin layer with which the resistor is coated.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 4, 2023
    Assignee: MINEBEA MITSUMI Inc.
    Inventors: Eiji Misaizu, Akiyo Yuguchi, Shigeyuki Adachi, Toshiaki Asakawa, Atsushi Kitamura
  • Patent number: 11692975
    Abstract: Embodiments include an electromagnetic acoustic transducer (EMAT) system. The EMAT system includes a plurality of magnets and a conductor set. The plurality of magnets has a like pole arrangement and wherein each magnet is in close proximity to one another. The conductor set includes electrically conductive elements. A portion of the conductor set is positioned proximate to the plurality of magnets. The plurality of magnets and the conductor set are positioned proximate to a test object. The EMAT system is configured to perform at least one of generating and receiving an elastic wave. Embodiments also include a method of elastic wave measurement for nondestructive testing and evaluation.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: July 4, 2023
    Assignee: itRobotics, Inc.
    Inventors: Bruce Wright Maxfield, Zhiyong Wang, Anouar Jamoussi, Mansoor Shah
  • Patent number: 11692917
    Abstract: A tensile testing fixture and a tensile testing device with improved specimen tensile stress accuracy are provided. The fixture includes a base, an adjusting mechanism disposed on the base, a floating mechanism disposed on and connected to the adjusting mechanism, a lower head disposed on and connected to the floating mechanism, and an upper head disposed above the lower head. The floating mechanism is configured to transmit a pulling force of the lower head to the adjusting mechanism. The adjusting mechanism is configured to adjust a position of the floating mechanism in a horizontal direction under the pulling force. The floating mechanism is further configured to adjust a position of the lower head in the horizontal direction, causing the lower head and the upper head to be coaxial in a vertical direction.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: July 4, 2023
    Assignee: TRIPLE WIN TECHNOLOGY (SHENZHEN) CO. LTD.
    Inventors: Wei Zhou, Hai-Ping Wang, Yu-Mei Deng
  • Patent number: 11692976
    Abstract: An ultrasonic scanning device includes at least one pair of cylindrical rollers. The axes of each pair of cylindrical rollers are parallel to each other. A liquid for transmitting the ultrasound is stored in each cylindrical roller. In use, a pair of cylindrical rollers rotate around their respective axes in reverse directions, the test subject passes between the pair of cylindrical rollers and is tested by ultrasound. The ultrasonic scanning device can be applied in the field of lithium-ion battery testing. The internal flaws and health status of the lithium-ion battery can be determined by acquiring an ultrasonic image in the test subject. The device of the present invention has a simple structure and an ingenious conception, and is ready-to-use and less expensive, which is successfully applied in the field of lithium-ion battery testing.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: July 4, 2023
    Assignee: Wuxi Topsound Technology Co., Ltd.
    Inventors: Yue Shen, Zhe Deng, Yunhui Huang
  • Patent number: 11686708
    Abstract: A system for non-destructive testing of a bond condition of concrete beams reinforced by steel rods is described. The system includes a transducing transmitter, a transducing receiver, and an ultrasonic pulse generator configured to generate drive signals for the transducing transmitter and receive a plurality vibrational waves at the transducing receiver. The system further includes a computing device including a measurement circuit configured to record a transit time for each vibrational wave and divide a distance between the transducing transmitter and the transducing receiver by the transit time to determine a pulse velocity of each vibrational wave, a comparison circuit configured to identify a highest pulse velocity of the vibrational waves and compare each highest pulse velocity to a first reference pulse velocity, and a decision circuit including an artificial neural network configured to identify a compromised bond condition around a steel rod.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: June 27, 2023
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventor: Muhammad Saleem
  • Patent number: 11686602
    Abstract: A method of providing a hybrid distributed fiber optic sensing system (DFOS) that extends an existing fiber optic telecommunications network thereby providing that existing fiber optic telecommunications network with DFOS capabilities.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: June 27, 2023
    Assignees: NEC Corporation, Verizon Patent and Licensing Inc.
    Inventors: Ming-Fang Huang, Ting Wang, Tiejun Xia, Glenn Wellbrock, Yoshiaki Aono
  • Patent number: 11680856
    Abstract: A controller configured for detecting a disturbance using a comparison of outputs of at least two sensors and for determining a pressure from the outputs of the at least two sensors. A ratio of the measurement sensitivity and the disturbance sensitivity should be different for the at least two sensors. A method for monitoring disturbances of a sensor assembly includes comparing the outputs of the at least two sensors. The controller and related method provide, while requiring only two sensors, a redundant system that is also able to detect excessive disturbances on a sensor assembly.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: June 20, 2023
    Assignee: MELEXIS TECHNOLOGIES NV
    Inventors: Johan Vergauwen, Ben Maes, Maliheh Ramezani, Appolonius Jacobus Van Der Wiel
  • Patent number: 11672426
    Abstract: A photoacoustic imaging system is disclosed that includes an ergodic relay coupled optically to a light source configured to produce a light pulse and further coupled acoustically to a transducer. The ergodic relay is further configured to direct at least two PA signals to the transducer. Each of the at least two PA signals are produced at different positions within the field of view of the object to be imaged in response to illumination by a single light pulse. The transducer detects each of the at least two PA signals after each of at least two delays that correspond to the position at which each PA signal was produced.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: June 13, 2023
    Assignee: California Institute of Technology
    Inventors: Lihong Wang, Yang Li, Lei Li
  • Patent number: 11674862
    Abstract: A pressure sensing unit, a capacitive hybrid sensor device, and an input apparatus using the same are provided. The pressure sensing unit for detecting pressing events includes a pressure sensing pad group and a floating conductive element. The pressure sensing pad group includes a first pressure sensing pad, a second pressure sensing pad, and a ground pad that are spaced apart from one another. The first and second pressure sensing pads are electrically shielded from each other by the ground pad. One among the floating conductive element and the pressure sensing pad group is configured to be movable in a movement direction relative to another one among the floating conductive element and the pressure sensing pad group. The floating conductive element overlaps with the pressure sensing pad group in the movement direction. Therefore, a signal-to-noise ratio can be increased and an erroneous detection can be prevented.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: June 13, 2023
    Assignee: PIXART IMAGING INC.
    Inventors: Che-Chia Hsu, Yu-Han Chen, Chi-Chieh Liao
  • Patent number: 11676802
    Abstract: Embodiments disclosed herein include a substrate support having a sensor assembly, and processing chamber having the same. In one embodiment, a substrate support has a puck. The puck has a workpiece support surface and a gas hole exiting the workpiece support surface. A sensor assembly is disposed in the gas hole and configured to detect a metric indicative of a deflection of a workpiece disposed on the workpiece support surface, wherein the sensor assembly is configured to provide the benefit of allowing gas to flow past the sensor assembly when positioned in the gas hole.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: June 13, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Wendell Glenn Boyd, Jr., Govinda Raj, Matthew James Busche
  • Patent number: 11668681
    Abstract: According to one embodiment, a detection system is provided that detects a state of a structure consisting of a first member that supports a traveling surface along which a vehicle travels from downward; a second member provided on an opposite side of the traveling surface with respect to the first member; and a welded portion that is provided along an end of the second member facing the first member and fixes the first member and the second member. The detection system includes: a first sensor group including first AE sensors; a second sensor group including second AE sensors; and a position orientator that performs separately a first determination that determines a generation source position of elastic waves based on the detection results of the first AE sensors and a second determination that determines the generation source position of elastic waves based on the detection results of the second AE sensors.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: June 6, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Usui, Kazuo Watabe, Takahiro Omori, Hidefumi Takamine, Akihiro Kasahara
  • Patent number: 11668616
    Abstract: A stretchable sensor skin is provided, which is a soft tactile sensor sleeve that can cover large areas of a robot, and is both low-cost and robust. It is made of elastomer molded pouches (referred to as sensor taxels) that when contacted transmit pneumatic pressure to off-board barometric sensors, via stretchable channels. The entirely soft makeup of the sleeve makes it highly conformable to 3D curved geometries of a robot. The stretchable channels mean that it can cover joints without wiring getting caught. The stretchable rubber channels are also inherently more robust than stretchable conductor approaches, and the skin lacks fragile soft-rigid interfaces that has plagued many other sensor skins. The fact that there are no conductive components also makes the skin easy to sanitize and waterproof.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: June 6, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alexander M. Gruebele, Michael A. Lin, Mark R. Cutkosky, Daniel C. Brouwer
  • Patent number: 11668632
    Abstract: An apparatus and method for generating a controlled, predictable, reproducible and variable-size distribution of particulate matter (PM), particle number (PN) and/or facsimile/simulation, derived from vaporizing and condensing a specialized liquid, utilizing a vapor delivery device; a filter capability so as to remove a significant amount of ambient PM/PN as a secondary calibration process for the identification of fine and ultra-fine particles (e.g., 0.3 micrometers and smaller) as well as a computer-controlled ability to perform a pre-determined series of calibration routines, housed in a container.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: June 6, 2023
    Assignee: 3DATX Corporation
    Inventors: Karl Ropkins, David Miller, John William Hynd, Jodi Miller, Craig Pfister, Andrew Burnette, Gurdas Sandhu
  • Patent number: 11662256
    Abstract: A temperature drift compensation method includes pre-aging a thermocouple, during which the thermocouple is subjected to temperatures and/or pressures that cause or facilitate an oxidation growth on the conductor elements of the thermocouple. During the pre-aging, temperature readings of the thermocouple are recorded, and a model including a time-based exponential expression is derived from the temperature readings. In addition, a temperature sensor system includes a pre-aged thermocouple, and a temperature compensation circuit that modifies initial temperature readings from the pre-aged thermocouple according to a model including a time-based exponential expression.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 30, 2023
    Assignee: ROLLS-ROYCE CORPORATION
    Inventors: John Joseph Costello, Robert C. Dalley, Kenneth L. Graham