Patents Examined by Marrit Eyassu
  • Patent number: 11513027
    Abstract: Described are systems and methods for evaluating the leak safety of threaded connections in well tubulars. A method, for example, includes assessing leak risk according to a Leak Criterion with Thread Shear. The Leak Criterion with Thread Shear is a function of the conditions relative to a pin-box interface radius and includes two constants: a Thread Modulus (alpha) and a Makeup Leak Resistance (beta). The leak risk is evaluated at the pin-box interface and is a function of differential pressure, effective stress, and shear stress. Lab tests conducted under known conditions are described for calculating the constants, alpha and beta, which are independent of extrinsic states or conditions.
    Type: Grant
    Filed: October 23, 2021
    Date of Patent: November 29, 2022
    Assignee: eWellbore, LLC
    Inventor: Malcolm A. Goodman
  • Patent number: 11506576
    Abstract: A trace analyte collection swab having a collection surface at least partially coated with a microscopically tacky substance to enhance pick-up efficiency is described. In embodiments, the truce analyte collection swab comprises a substrate including a surface having a trace analyte collection area and a coating disposed on the surface of the substrate in the trace analyte collection area. The coating is configured to be microscopically adhesive to collect particles of the trace analyte from a surface when the trace analyte collection area is placed against the surface. In one embodiment, the coating comprises Polyisobutylene.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: November 22, 2022
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Paul Christopher Peter Thomson, Atin J. Patel
  • Patent number: 11506630
    Abstract: Described examples include devices and methods for measuring relative humidity of an environment using inductance. The devices can include a resonant circuit, including a capacitor and an inductor. The inductor includes a moisture-absorbing core with at least a portion thereof exposed to an environment, with at least one magnetic property of the core being variable in response to changing levels of moisture in the environment. An excitation circuit provides an AC excitation signal to the resonant circuit. A sense circuit determines an inductance of the inductor according to a sense signal from the resonant circuit. The sense circuit is coupled to generate an output signal that indicates a humidity level of the environment according to the sense signal.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: November 22, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Peter Smeys, Joyce Marie Mullenix
  • Patent number: 11485129
    Abstract: A probe for an additive manufacturing system includes a probe body having a first air port therethrough between an inlet and an outlet, and a location sensing probe extending from the probe body. The location sensing probe includes a probe end and a probe bar, the probe bar coupled between the probe body and the probe end, and a channel surrounding the probe bar, the channel having an inner tube having an inlet proximate the probe body and an outlet proximate the probe end. A method of determining a position of an item being printed in an additive manufacturing system, includes probing the position with a location sensing probe having a resolution finer than a print resolution of the print head.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Stratasys, Inc.
    Inventors: Brent Jorgenson, Michael D. Bosveld, Logan R. Kiene, Jerome W. Goetzke, Benjamin L. Braton, David Mulcrone
  • Patent number: 11479373
    Abstract: A system and method of acquiring and delivering samples, such as in association with an interplanetary vehicle is provided. The system includes a gas delivery assembly having a storage tank with a compressed gas. A sampler device is provided having a hollow interior, the hollow interior having a curved and angled surface, an open end and an exit end. A plurality of nozzles are fluidly coupled between the hollow interior and the storage tank, at least one of the plurality of nozzles arranged to direct the compressed gas towards the exit end. A sample capture assembly is further provided having a container fluidly coupled to the exit end.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 25, 2022
    Assignee: HONEYBEE ROBOTICS, LLC
    Inventors: Philip Chu, Justin Spring, Kris Zacny
  • Patent number: 11480428
    Abstract: A method to test a size of a hole includes causing a test probe to vibrate and contact multiple portions of an edge of the hole for a testing cycle when the test probe is inserted into the hole, measuring displacement of the test probe, by a sensor coupled to the test probe, as the test probe makes contact with the multiple portions of the edge of the hole, estimating a measurement of the size of the hole based on the displacement of the test probe and reference to calibrated measurements of reference holes, and outputting a notification indicative of an estimation of the measurement.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 25, 2022
    Assignee: The Boeing Company
    Inventors: William Henry Schasteen, Jr., Richard John Wichels
  • Patent number: 11480483
    Abstract: A load detector for detecting a load of a subject on a bed (BD) having a caster (CT) includes: a plate portion (1) which is one-fold and which is to be supported above an installation surface (F), on which the load detector is installed, separately from the installation surface; and a slope portion (SL1, SL2, SL3, SL4) which is provided around the plate portion and which is inclined relative to a surface of the plate portion so as to extend between the surface of the plate portion and the installation surface. The plate portion includes: a peripheral part (13); a placing part (11) on which the caster is to be placed, and which is provided inside relative to the peripheral part separately from the peripheral part; and a linking part (12) which links the placing part and the peripheral part.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: October 25, 2022
    Assignee: MINEBEA MITSUMI Inc.
    Inventor: Manabu Tanaka
  • Patent number: 11467130
    Abstract: A method and apparatus for inspecting a fusion joint is provided. The apparatus includes a processor, an ultrasound (“US”) probe in communication with the processor, and a database comprising classification rules. The processor is configured to generate an initial set of US scanning positions about the fusion joint based on information of at least one of the US probe and the fusion joint; measure, via the US probe, a US pulse-echo spectrum from at least two of the initial US scanning positions; compare each measured US pulse-echo spectrum with one or more known US pulse-echo spectrums; classify each measured US pulse-echo spectrum according to the classification rules; and evaluate an aggregate of measured US pulse-echo spectrums to determine if the fusion joint is defective.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 11, 2022
    Assignee: JANA Corporation
    Inventors: Dalton Crosswell, Patrick Vibien, Wayne Bryce
  • Patent number: 11460022
    Abstract: A device includes a main body and at least one actuating and sensing module. A length of the main body is 5˜40 mm. A width of the main body is 5˜27 mm. A height of the main body is 2˜10 mm. The actuating and sensing module is disposed in the main body. The actuating and sensing module includes a carrier, at least one sensor, at least one actuating device, a driving and transmitting controller and a battery. The sensor, the actuating device, the driving and transmitting controller and the battery are disposed on the carrier. The actuating device is disposed on one side of the sensor. The actuating device includes at least one guiding channel. The actuating device is enabled to transport fluid to flow toward the sensor through the guiding channel so as to make the fluid measured by the sensor.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: October 4, 2022
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Hsuan-Kai Chen, Wei-Ming Lee, Chang-Yen Tsai
  • Patent number: 11435307
    Abstract: A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided. In an embodiment, the material has a resistance/humidity variation of about ?15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or ?0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced-graphene oxide (negative resistance variation) behaviors.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 6, 2022
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Yanlong Tai, Gilles Lubineau
  • Patent number: 11408566
    Abstract: A subsea high integrity pipeline protection system including a fluid inlet, a fluid outlet, a first barrier valve connected between the fluid inlet and the fluid outlet, a second barrier valve connected between the first barrier valve and the fluid outlet, and a bypass circuit which allows fluid to circumvent the barrier valves when closed, wherein the bypass circuit includes first and second bypass valves connected in series, and a third bypass valve connected in parallel to the second bypass valve.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: August 9, 2022
    Assignee: BAKER HUGHES ENERGY TECHNOLOGY UK LIMITED
    Inventor: Stephane Simon
  • Patent number: 11406759
    Abstract: A method for connecting a force sensor to a circuit board is disclosed. A circuit board having first and second conductive leads located on the same surface of the circuit board is provided. Also provided is a force sensor with a first flexible contact tab having a first contact pad and a second flexible contact tab having a second contact pad. The first contact pad is arranged to face the first conductive lead. A first conductive rubber element establishes an electrical connection between the first contact pad and the first conductive lead, and the second contact pad and the second conductive lead are arranged to face in the same direction. A second conductive rubber element establishes an electrical connection between the second contact pad and the second conductive lead. Also disclosed are an associated device for determining fluid pressure in an insulin pump and an insulin pump.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 9, 2022
    Assignee: Roche Diabetes Care, Inc.
    Inventor: Hans List
  • Patent number: 11408807
    Abstract: The invention provides a test device and method for controlling a low-temperature environment. A double-layer stainless steel plate forms an interlayer cavity of a cooling box; four walls of the cooling box are provided with a heat insulation plate; a probe thermometer is disposed on a side wall of the cooling box; both the top of a press and the bottom of an indenter of a universal testing machine are provided with a fiberglass reinforced plastic pipe cover; the cooling box is disposed on the press; the indenter is disposed in the cooling box through a through hole; a cold bath device communicate with the cooling box; the cold bath device and the interlayer cavity are provided with a freezing liquid; a stress-strain data acquisition instrument is connected to a sample in the cooling box through a strain gage and a strain gage connection line.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: August 9, 2022
    Assignee: INNER MONGOLIA UNIVERSITY OF TECHNOLOGY
    Inventors: Xiaoxiao Wang, Shuguang Liu, Changwang Yan, Heng Li
  • Patent number: 11402291
    Abstract: A method of assessing damage to a composite member requires the formation of a composite member comprising at least one cavity. A first pressure differential is then established between the cavity and the surrounding ambient pressure. The rate of change of the pressure differential over a first predetermined period is monitored and then the pressure differential is allowed to subside. The result of the monitoring step is stored as a reference value, so that after the composite member is damaged, or after it has been in service for a predetermined time, the test can be repeated and compared with the reference value. If the result of the repeated monitoring differs from the reference value by more than a predetermined amount, it is determined that the composite member is defective.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: August 2, 2022
    Assignee: Bentley Motors Limited
    Inventor: Martin Robert Peel
  • Patent number: 11402289
    Abstract: The invention relates to various means for implementing a method for compensating measured values in capacitive pressure measuring cells using a measuring capacity and at least one reference capacity, comprising the following steps: determination of a pressure-induced capacitance change of the reference capacitance as a function of a pressure-induced capacitance change of the measuring capacitance, determination of a thermal shock-induced capacitance change of the reference capacitance as a function of a thermal shock-induced capacitance change of the measuring capacitance, measurement of the measuring capacitance and of the at least one reference capacitance, determination of the thermal shock-induced capacitance change of the measuring capacitance from a combination of the above dependencies, compensation of the measured measuring capacitance by the thermal shock induced capacitance change of the measuring capacitance, and determination and output of the pressure-induced capacitance change or a quantity
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 2, 2022
    Assignee: VEGA GRIESHABER KG
    Inventors: Levin Dieterle, Bernhard Weller
  • Patent number: 11402309
    Abstract: A testing equipment of dynamic penetration plate anchor for a hypergravity centrifuge includes five parts: a test model box, a magnetic induction positioning system, an anchor release device, a loading and measuring device and a dynamic penetration plate anchor. A test foundation is disposed in the test model box, the top part of the test model box along a lengthwise direction is provided with a slide rail of model box, the anchor release device and the loading and measuring device are installed on the slide rail of model box, and the magnetic induction positioning system is installed on the anchor plate of the dynamic penetration plate anchor and the test model box. It can solve the problem that movement information of the anchor body is difficult to obtain due to opaque soil, and can accurately and effectively carry out tests of dynamic penetration plate anchors of hypergravity centrifuges.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: August 2, 2022
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Ying Lai, Bin Zhu, Yunmin Chen, Chuan Chen
  • Patent number: 11397160
    Abstract: Provided are a gas sensor, a gas detection device, a gas detection method and a device provided with the gas detection device, capable of improving gas detection performance. The gas detection device is provided with a gas sensor comprising a thermosensitive resistance element and a porous gas molecule adsorptive material thermally bonded to the thermosensitive resistance element that releases specified gas molecules due to heating and cooling, and a power supply control unit that heats and cools the thermosensitive resistance element by controlling the supply of power thereto. The gas detection method comprises a heating step for putting the porous gas molecule adsorptive material in a heated state and a detecting step for detecting a specific gas due to the temperature change in the thermosensitive resistance element by heating.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 26, 2022
    Assignee: SEMITEC Corporation
    Inventors: Toshiyuki Nojiri, Dezhi Cheng
  • Patent number: 11397119
    Abstract: [Object] To provide a torque sensor and power control actuator that are reduced in size and are capable of detecting torque with high accuracy. [Solution] The torque sensor includes: a first rotating body capable of making axial rotation about an input axis; a second rotating body capable of making axial rotation about an output axis; a strain generation part provided between the first rotating body and the second rotating body, having a first surface facing one side in a first direction parallel to the input axis and a second surface facing the other side in the first direction, and configured to transfer rotation torque while generating a strain between the first rotating body and the second rotating body; and a plurality of strain detection parts provided on the first surface and the second surface, respectively, to detect a strain of the strain generation part.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: July 26, 2022
    Assignee: SONY CORPORATION
    Inventor: Kiyokazu Miyazawa
  • Patent number: 11391708
    Abstract: An actuating and sensing module is provided. The actuating and sensing module includes at least one sensor, at least one actuating device and a power storage member. The sensor is disposed for measuring fluid. The actuating device is disposed proximate to the sensor and is disposed for transporting the fluid. The power storage member is configured as a graphene battery and is disposed for providing power to the at least one sensor and the at least one actuating device for driving the at least one sensor and the at least one actuating device. The actuating device is driven to transport the fluid toward the sensor so as to make the fluid measured by the sensor.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 19, 2022
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ta-Wei Hsueh, Li-Pang Mo, Shih-Chang Chen, Ching-Sung Lin, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai
  • Patent number: 11391699
    Abstract: A turbidity measurement device for measuring turbidity of a fluid flowing in a flow tube. A first transducer transmits ultrasonic signals through the fluid in the turbidity measurement section so as to provide a first ultrasonic standing wave between the first and second section ends. A receiver transducer receives the ultrasonic scattered response from particles in the fluid flowing through the turbidity measurement section. A control circuit operates the transducers and generates a signal indicative of the turbidity of the fluid in response to signals received from the receiver transducer. Preferably, the device may comprise a second transducer for generating a second ultrasonic standing wave with the same frequency, and further the two transducers may be used to generate a measure of flow rate by means of known ultrasonic techniques. This flow rate may be used in the calculation of a measure of turbidity.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: July 19, 2022
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, Sune Hoveroust Dupont