Patents Examined by Marvin Payen
  • Patent number: 11963371
    Abstract: A certain embodiment includes: first wiring layers extended in a first direction and arranged in a second direction; second wiring layers provided above the first wiring layer of a third direction and arranged in the first direction and extended in the second direction; first stacked structures comprising a first memory cell disposed between the second and first wiring layers at a crossing portion between the second and first wiring layers; first conductive layers provided in the same layer as the first wiring layers, adjacent to the first wiring layer in the second direction, and not connected to other than the second wiring layer; second stacked structures disposed at crossing portions between the second wiring layers and the first conductive layers; and an insulation layer provided between the first stacked structures and between the second stacked structures having a Young's modulus larger than that of the insulation layer.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 16, 2024
    Assignee: Kioxia Corporation
    Inventor: Kotaro Noda
  • Patent number: 11963369
    Abstract: The present disclosure relates to an integrated circuit. The integrated circuit has a plurality of bit-line stacks disposed over a substrate and respectively including a plurality of bit-lines stacked onto one another. A data storage structure is over the plurality of bit-line stacks and a selector is over the data storage structure. A word-line is over the selector. The selector is configured to selectively allow current to pass between the plurality of bit-lines and the word-line. The plurality of bit-line stacks include a first bit-line stack, a second bit-line stack, and a third bit-line stack. The first and third bit-line stacks are closest bit-line stacks to opposing sides of the second bit-line stack. The second bit-line stack is separated from the first bit-line stack by a first distance and is further separated from the third bit-line stack by a second distance larger than the first distance.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Jung-Piao Chiu, Tzu-Chiang Chen, Yu-Sheng Chen
  • Patent number: 11957070
    Abstract: A memory cell includes a memory device, a connecting structure, an insulating layer and a selector. The connecting structure is disposed on and electrically connected to the memory device. The insulating layer covers the memory device and the connecting structure. The selector is located on and electrically connected to the memory device, where the selector is disposed on the insulating layer and connected to the connecting structure by penetrating through the insulating layer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Ying Lee, Bo-Jiun Lin, Shao-Ming Yu, Yu-Chao Lin
  • Patent number: 11955554
    Abstract: A method of fabrication of a multi-gate semiconductor device that includes providing a fin having a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. The plurality of the second type of epitaxial layers is oxidized in the source/drain region. A first portion of a first layer of the second type of epitaxial layers is removed in a channel region of the fin to form an opening between a first layer of the first type of epitaxial layer and a second layer of the first type of epitaxial layer. A portion of a gate structure is then formed in the opening.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huan-Sheng Wei, Hung-Li Chiang, Chia-Wen Liu, Yi-Ming Sheu, Zhiqiang Wu, Chung-Cheng Wu, Ying-Keung Leung
  • Patent number: 11950520
    Abstract: A method of manufacturing a storage device for storing information, apparatus for storing information, an optical memristor device and a memory cell are disclosed. A method comprises providing at least one first electrode and at least one further electrode and providing each of at least one region of a first material between, and in electrical connection with, a respective first electrode and a further electrode whereby said step of providing at least one region comprises providing in the first material, a plurality of changeable particles that have charge storage capacity and at least one electrical property that is reversibly changeable responsive to absorption of incident electromagnetic radiation.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: April 2, 2024
    Assignee: THE UNIVERSITY OF HULL
    Inventor: Neil Kemp
  • Patent number: 11949002
    Abstract: In an embodiment, a method includes: forming a fin extending from a substrate, the fin having a first width and a first height after the forming; forming a dummy gate stack over a channel region of the fin; growing an epitaxial source/drain in the fin adjacent the channel region; and after growing the epitaxial source/drain, replacing the dummy gate stack with a metal gate stack, the channel region of the fin having the first width and the first height before the replacing, the channel region of the fin having a second width and a second height after the replacing, the second width being less than the first width, the second height being less than the first height.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Hsieh Wong, Yen-Ting Chen, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11950523
    Abstract: A memory device, a memory integrated circuit and a manufacturing method of the memory device are provided. The memory device includes a composite bottom electrode, a top electrode and a resistance variable layer disposed between the composite bottom electrode and the top electrode. The composite bottom electrode includes a first bottom electrode and a second bottom electrode disposed over the first bottom electrode. A sidewall of the second bottom electrode is laterally recessed from sidewalls of the first bottom electrode layer and the resistance variable layer.
    Type: Grant
    Filed: July 4, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Fu-Ting Sung
  • Patent number: 11917837
    Abstract: A method of forming the semiconductor device is provided. The method includes following steps. A memory structure is formed over a first conductive line over a substrate and is electrically connected to the first conductive line. A sacrificial layer is formed on the memory structure. A spacer layer is formed to cover the memory structure and the sacrificial layer. A first dielectric layer is formed to cover the spacer layer. A planarization process is performed to remove a portion of the first dielectric layer. A second dielectric layer is formed on the spacer layer and the first dielectric layer. A patterning process is performed to form an opening exposing a portion of the top surface of the sacrificial layer. The sacrificial layer is removed to form a recess. A second conductive line is formed in the opening and the recess to be electrically coupled to the memory structure.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: February 27, 2024
    Assignee: Winbond Electronics Corp.
    Inventors: Yung-Han Chiu, Shu-Ming Li, Po-Yen Hsu
  • Patent number: 11908736
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: February 20, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Jussila, Qi Xie
  • Patent number: 11895850
    Abstract: A variable resistance memory device includes memory cell structures on a substrate and spaced apart from each other in first and second directions, the first and second directions being parallel to a top surface of the substrate and intersecting each other, and a dummy cell structure surrounding each of the memory cell structures, as viewed in a plan view, the dummy cell structure being a single body structure extending continuously between all the memory cell structures, wherein each of the memory cell structures includes first conductive line on and intersecting second conductive lines, and memory cells between the first and second conductive lines, and wherein the dummy cell structure includes first dummy conductive lines on and intersecting second dummy conductive lines, and dummy memory cells between the first and second dummy conductive lines.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: February 6, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Min Chul Han
  • Patent number: 11882775
    Abstract: An electronic device comprises a semiconductor memory that includes: a first line; a second line disposed over the first line to be spaced apart from the first line; a variable resistance layer disposed between the first line and the second line; a first electrode layer disposed between the first line and the variable resistance layer; and a first oxide layer disposed between the variable resistance layer and the first electrode layer. The first electrode layer includes a first carbon material doped with a first element, and the first oxide layer includes a first oxide of the first element.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 23, 2024
    Assignee: SK hynix Inc.
    Inventors: Ji Sun Han, Yong Hun Sung, Byung Jick Cho
  • Patent number: 11882773
    Abstract: Provided are a resistive random access memory (RRAM) and a manufacturing method thereof. The resistive random access memory includes multiple unit structures disposed on a substrate. Each of the unit structures includes a first electrode, a first metal oxide layer, and a spacer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. The spacer is disposed on sidewalls of the first electrode and the first metal oxide layer. In addition, the resistive random access memory includes a second metal oxide layer and a second electrode. The second metal oxide layer is disposed on the unit structures and is connected to the unit structures. The second electrode is disposed on the second metal oxide layer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 23, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Kai Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
  • Patent number: 11877524
    Abstract: Methods of forming a settable resistance device, settable resistance devices, and neuromorphic computing devices include isotropically etching a stack of layers, the stack of layers having an insulator layer in contact with a conductor layer, to selectively form divots in exposed sidewalls of the conductor layer. The stack of layers is isotropically etched to selectively form divots in exposed sidewalls of the insulator layer, thereby forming a tip at an interface between the insulator layer and the conductor layer. A dielectric layer is formed over the stack of layers to cover the tip. An electrode is formed over the dielectric layer, such that the dielectric layer is between the electrode and the tip.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: January 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Juntao Li, Kangguo Cheng, Dexin Kong, Zheng Xu
  • Patent number: 11871684
    Abstract: A semiconductor device includes a substrate and a gate structure disposed over the substrate. The gate structure includes at least one gate electrode layer and at least one interlayer insulating layer that are alternately stacked over the substrate. The semiconductor device includes a hole pattern penetrating the gate structure over the substrate, and a gate insulating layer, a channel layer, a resistor layer, and a resistance changing layer sequentially disposed on a sidewall surface of the gate structure within the hole pattern. Each of the resistor layer and the resistance changing layer is disposed opposite to the gate insulating layer, based on the channel layer.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 9, 2024
    Assignee: SK hynix Inc.
    Inventor: Jae Hyun Han
  • Patent number: 11871685
    Abstract: A RRAM device includes a bottom electrode, a resistive material layer, a high work function layer, a top electrode, a hard mask and high work function sidewall parts. The bottom electrode, the resistive material layer, the high work function layer, the top electrode and the hard mask are sequentially stacked on a substrate. The high work function sidewall parts cover sidewalls of the top electrode and sidewalls of the hard mask, thereby constituting a RRAM cell. A method of forming said RRAM device is also provided.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: January 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Jen Wang, Chun-Hung Cheng, Chuan-Fu Wang
  • Patent number: 11871642
    Abstract: An OLED panel for implementing biometric recognition influencing an aperture ratio of an OLED light emitter i includes a substrate, an OLED on the substrate, and a driver on the substrate. The OLED may emit visible light, and the driver may drive the OLED. The driver may include a visible light sensor configured to detect the visible light emitted by the OLED, and the visible light sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate. The OLED panel may include a near infrared ray OLED that is configured to emit near infrared rays, and the driver may include a near infrared ray sensor configured to detect near infrared rays emitted by the near infrared ray OLED. The near infrared ray sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung Bae Park, Kwang Hee Lee, Chul Joon Heo
  • Patent number: 11856797
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain has a zero-tilt doping profile and the source has a tilted doping profile. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 11854783
    Abstract: This disclosure is related to arranging micro devices in the donor substrate by either patterning or population so that there is no interfering with unwanted pads and the non-interfering area in the donor substrate is maximized. This enables to transfer the devices to receiver substrate with fewer steps.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: December 26, 2023
    Assignee: VueReal Inc.
    Inventor: Gholamreza Chaji
  • Patent number: 11855025
    Abstract: A semiconductor device includes a conductive pad having a first width. The semiconductor device includes a passivation layer over the conductive pad, wherein the passivation layer directly contacts the conductive pad. The semiconductor device includes a protective layer over the passivation layer, wherein the protective layer directly contacts the conductive pad. The semiconductor device includes an under-bump metallization (UBM) layer directly contacting the conductive pad, wherein the UBM layer has a second width greater than the first width. The semiconductor device includes a conductive pillar on the UBM layer.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chita Chuang, Yao-Chun Chuang, Tsung-Shu Lin, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 11856814
    Abstract: The present disclosure provides a display panel and a manufacturing method for the display panel. The display panel includes a substrate, a switch assembly disposed on the substrate, and a light-sensing assembly disposed on a side of the switch assembly. The switch assembly comprises an indium gallium zinc oxide (IGZO) layer.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: December 26, 2023
    Assignees: HKC CORPORATION LIMITED, CHONGQING HKC OPTOELECTRONICS TECHNOLOGY CO., LTD
    Inventor: En-Tsung Cho