Patents Examined by Matthew R Diaz
  • Patent number: 10515737
    Abstract: A conductive paste composition, a method for preparing the same, and an electrode formed by the conductive paste composition are disclosed. In one aspect, the conductive paste composition includes a copper-based particle and a boron-based particle of which a surface is partially or entirely coated with boron oxide. The boron-based particle is crystalline boron-based particle or amorphous boron-based particle. The boron-based particle has a content of more than 1 wt % to less than 10 wt % based on a total content of the conductive paste composition.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 24, 2019
    Assignee: Korea Electronics Technology Institute
    Inventors: Sung Hyun Kim, Ji Sun Park, Myong Jae Yoo
  • Patent number: 10504635
    Abstract: An object of the present invention is to provide a carbonaceous material for a negative electrode for producing a nonaqueous electrolyte secondary battery capable of rapid charge and discharge and having excellent rate characteristics (output characteristics) while maintaining a large discharge capacity. The problem described above can be solved by a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention obtained by heat-treating a non-graphitizable carbon precursor which is pulverized and contains from 13 to 80 wt. % of a volatile component. With the present invention, it is possible to provide a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode, whereby a nonaqueous electrolyte secondary battery having a large charge-discharge capacity and having excellent rate characteristics can be produced.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: December 10, 2019
    Assignee: KURARAY CO., LTD.
    Inventors: Makoto Imaji, Yasuhiro Tada, Naohiro Sonobe
  • Patent number: 10497486
    Abstract: A gas sensor that includes a heat source and a gas sensing film. The gas sensing film includes a polycrystalline tungsten trioxide film thermally connected to the heat source and a plurality of islands of gold on a surface of the polycrystalline tungsten trioxide film. The surface of the polycrystalline tungsten trioxide film is exposed between the islands of gold to allow the polycrystalline tungsten trioxide film to sense gas. A first electrode that electrically connected to the polycrystalline tungsten trioxide film and a second electrode is electrically connected to the polycrystalline tungsten trioxide film. The resistance of the polycrystalline tungsten trioxide film between the first electrode and the second electrode changes when the polycrystalline tungsten trioxide film is exposed to a particular type of gas.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 3, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso
  • Patent number: 10490316
    Abstract: Provided are novel titanium oxide particles, production method thereof, and applications which do not need a conductive aid or minimize the conductive aid. Novel titanium oxide particles 1 employ a three-dimensional network structure in which multiple crystallites 2 are coupled in sequence, and a magneli phase 2a is formed on the surface of the crystallites 2. The crystallites 2 are oriented at random, coupled with each other via pinacoid or end surface, and laminated as the three-dimensional network structure. A large number of spaces 3 in nano size is present in the titanium oxide particles 1, a grain boundary of the bonding interface is eliminated between the crystallites 2, while a large number of pores is present.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: November 26, 2019
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Katsuhiko Naoi, Wako Naoi, Satoru Tsumeda, Shuichi Ishimoto, Kenji Tamamitsu
  • Patent number: 10407604
    Abstract: Provided is a heat-dissipating resin composition including: a rubber material having an average emissivity of 80% or higher in a wavelength range from 5 ?m to 20 ?m; and a filler having a grain diameter of 15 ?m or smaller and an aspect ratio of 3 to 10, wherein the heat-dissipating resin composition has an emissivity of 90% or higher in the wavelength range from 5 ?m to 20 ?m.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: September 10, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Honami Nawa, Hirohisa Hino, Arata Kishi, Naomichi Ohashi, Yasuhiro Suzuki, Hidenori Miyakawa
  • Patent number: 10315967
    Abstract: Reactant materials for use in the synthesis of compounds comprising a non-metal and hydrogen, and methods of making and using the same are provided. The reactant materials generally comprise first and second non-metals, metals, a cation, and a transition metal, and can be formed and used in reactions occurring at relatively low-pressure conditions using heat energy that can be supplied via solar radiation. In particular, the reactant materials can be used in the synthesis of ammonia and various hydrocarbon compounds using air, water, and sunlight.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: June 11, 2019
    Assignee: Kansas State University Research Foundation
    Inventors: Ronald Michalsky, Peter Pfromm
  • Patent number: 10311994
    Abstract: A quantum dot ink, a manufacturing method thereof and a quantum dot light emitting diode device are provided. The quantum dot ink includes a non-polar organic solvent, a surface tension modifier and a hydrophobic quantum dot, the quantum dot ink further includes a carrier transport material, wherein phase separation is present between the hydrophobic quantum dot and the carrier transport material. After completing ink-jet printing the quantum dot ink, phase separation occurs between the hydrophobic quantum dot and the carrier transport material. Thus, the two-layer structure of a hydrophobic quantum dot layer and a carrier transport material layer is formed through one process. Not only a quantum dot light emitting device is manufactured by the method of ink-jet printing, but also the operation is simplified, and the manufacturing cost of the quantum dot light emitting device is reduced.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: June 4, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Xiaolong He, Qi Yao, Seongyeol Yoo, Shi Shu, Zhanfeng Cao, Wei Xu
  • Patent number: 10304597
    Abstract: A metal nitride material for a thermistor consists of a metal nitride represented by the general formula: Mx(Al1-vSiv)y(N1-wOw)z (where “M” represents at least one of Ti, V, Cr, Mn, Fe, and Co, 0.0<v<0.3, 0.70?y/(x+y)?0.98, 0.45?z?0.55, 0<w?0.35, and x+y+z=1), wherein the crystal structure thereof is a hexagonal wurtzite-type single phase. A method for producing the metal nitride material for a thermistor includes a deposition step of performing film deposition by reactive sputtering in a nitrogen and oxygen-containing atmosphere using an M-Al—Si alloy sputtering target (where “M” represents at least one of Ti, V, Cr, Mn, Fe, and Co).
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 28, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshiaki Fujita, Hiroshi Tanaka, Noriaki Nagatomo
  • Patent number: 10297822
    Abstract: An object of the present invention is to provide a positive active material for a nonaqueous electrolyte secondary battery which has a large discharge capacity and is superior in charge-discharge cycle performance, initial efficiency and high rate discharge performance, and a nonaqueous electrolyte secondary battery using the positive active material. The present invention pertains to a positive active material for a nonaqueous electrolyte secondary battery containing a lithium transition metal composite oxide which has a crystal structure of an ?-NaFeO2 type, is represented by a compositional formula Li1+?Me1??O2 (Me is a transition metal element including Co, Ni and Mn, ?>0), and has a molar ratio Li/Me of Li to the transition metal element Me of 1.2 to 1.6, wherein a molar ratio Co/Me of Co in the transition metal element Me is 0.02 to 0.23, a molar ratio Mn/Me of Mn in the transition metal element Me is 0.62 to 0.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: May 21, 2019
    Assignee: GS Yuasa International Ltd.
    Inventors: Daisuke Endo, Yoshihiro Katayama, Tetsuya Murai, Masafumi Shibata
  • Patent number: 10297360
    Abstract: A negative electrode active material includes a silicon-containing alloy having a composition represented by: SixSnyMzAa (A is unavoidable impurities, M is one or more transition metal elements, x, y, z, and a represent values of percent by mass, and 0<x<100, 0<y<100, 0<z<100, and 0?a<0.5 and x+y+z+a=100). The silicon-containing alloy has a lattice image subjected to Fourier transform processing to obtain a diffraction pattern and a size determined as an average value of maximum five major axis diameters of regions having a periodic array from a Fourier image obtained by subjecting a diffraction ring portion present in a width of from 0.7 to 1.0 when a distance between Si regular tetrahedrons is 1.0 in this diffraction pattern to inverse Fourier transform is 10 nm or less.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 21, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Manabu Watanabe, Nobutaka Chiba, Humihiro Miki, Makoto Tanimura
  • Patent number: 10283231
    Abstract: An electrically conductive composition of the present invention contains an expanded graphite, carbon nanotubes, and a polymer compound. An amount of the expanded graphite to be contained is not less than 30 parts by weight and not more than 70 parts by weight with respect to 100 parts by weight of a total amount of the expanded graphite and the polymer compound. An amount of the carbon nanotubes to be contained is not less than 0.5 part by weight and not more than 10 parts by weight with respect to 100 parts by weight of the total amount of the expanded graphite and the polymer compound.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: May 7, 2019
    Assignee: ZEON CORPORATION
    Inventors: Tsutomu Nagamune, Masahiro Shigeta, The Ban Hoang, Mitsugu Uejima
  • Patent number: 10283230
    Abstract: Provided is a method for producing a coating liquid for forming a transparent conductive film, capable of forming a transparent conductive film having excellent transparency and electrical conductivity using a wet-coating method. Disclosed is the method for producing a coating liquid for forming a transparent conductive film, the method including a heating and dissolution step and a dilution step, in which the conditions for heating and dissolution/reaction of the heating and dissolution step are such that the heating temperature is in the range of 130° C.?T?180° C., and the heating time is in the range shown in FIG. 1.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 7, 2019
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Yoshihiro Otsuka, Yuki Murayama
  • Patent number: 10269465
    Abstract: The sulfide of the present invention comprises an amorphous (lithium) niobium sulfide having an average composition represented by formula (1): Lik1NbSn1 (wherein 0?k1?5; 3?n1?10; and when n1?3.5, k1?0.5), or an amorphous (lithium) titanium niobium sulfide having an average composition represented by formula (2): Lik2Ti1-m2Nbm2Sn2 (wherein 0?k2?5; 0<m2<1; 2?n2?10; and when n2?3.5, k2?1.5). The sulfide of the present invention is a material that is useful as a cathode active material for lithium batteries, such as lithium primary batteries, lithium secondary batteries, and lithium ion secondary batteries, and has a high charge-discharge capacity, high electrical conductivity, and excellent charge-discharge performance.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 23, 2019
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi Sakuda, Tomonari Takeuchi, Noboru Taguchi, Hikari Sakaebe, Kuniaki Tatsumi
  • Patent number: 10240061
    Abstract: The present invention provides a conductive polymer composite including: (A) a ?-conjugated polymer, and (B) a dopant polymer which contains a repeating unit “a” shown by the following general formula (1) and has a weight-average molecular weight in the range of 1,000 to 500,000. There can be provided a conductive polymer composite that has excellent filterability and film-formability by spin coating, and also can form a conductive film having high transparency and flatness when the film is formed therefrom.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: March 26, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Takayuki Nagasawa
  • Patent number: 10224127
    Abstract: The resin composition according to the present invention contains a polyacetal resin having a specific molecular weight distribution, a specific carbon black, and an alkaline metal wherein the contents of the carbon black and the alkaline metal are in specific ranges. The molded article according to the present invention contains the resin composition.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 5, 2019
    Assignee: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Nozomi Inagaki, Takaaki Miyoshi, Junichi Tsuzuki
  • Patent number: 10170212
    Abstract: The invention relates to a novel solid state process for the preparation of metal-containing compounds comprising the steps i) forming a reaction mixture comprising one or more metal-containing precursor compounds and optionally one or more non-metal-containing reactants, and ii) using one or more hypophosphite-containing materials as a reducing agent; wherein one or more of the hypophosphite-containing materials is used as an agent to reduce one or more of the metal-containing precursor compounds; and further wherein the process is performed in the absence of an oxidizing atmosphere. Materials made by such a process are useful, for example, as electrode materials in alkali metal-ion battery applications.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: January 1, 2019
    Assignee: FARADION LIMITED
    Inventors: Jeremy Barker, Richard Heap
  • Patent number: 10141082
    Abstract: The present invention relates to oxidation resistant copper nanoparticles, and to a method for producing the same, which includes the steps of: preparing a first solution composed of a solvent, a polymer, and an organic acid; stirring the first solution to produce a first stirred solution; mixing the first stirred solution, a copper precursor, and a first reducing agent to produce a second reactant solution; mixing a second reducing agent with the second reactant solution to produce a third reactant solution; and collecting copper nanoparticles separated from the third reactant solution, which is a very simple process performing the reactions at a normal temperature under atmospheric conditions to produce copper nanoparticles, and an eco-friendly method firstly applying a watery solvent so as to achieve mass production of copper nanoparticles only by mixing solutions.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 27, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young-Jei Oh, Se-Hoon Kim
  • Patent number: 10083774
    Abstract: The present invention provides a quantum dot encapsulated by a siloxane including an alkyl group having 4 or more carbon atoms, a composition including the same, and a device to which the composition is applied, and when the encapsulated quantum dot is used, quantum yield and dispersion stability may be enhanced.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: September 25, 2018
    Assignee: LMS Co., Ltd.
    Inventors: Doo Hyo Kwon, Jeong Og Choi, Oh Kwan Kwon
  • Patent number: 10074454
    Abstract: The composition described herein for the prevention of corrosion comprises: sacrificial metal particles more noble than a metal substrate to which the composition contacts; carbonaceous material that can form electrical contact between the sacrificial metal particles; and means for providing an anticorrosion coating material for the metal substrate. The composition can form a coating on a metal substrate surface. A method for applying the composition for the prevention of corrosion is also described herein.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 11, 2018
    Assignee: Tesla NanoCoatings, Inc.
    Inventors: Jorma Antero Virtanen, Todd Hawkins
  • Patent number: 10074453
    Abstract: Polypyrrole/carbon (PPy/C) composite doped with organic anion p-toluenesulfonate (pTS) is utilized as an electrode in supercapacitor for energy storage application. The surface initiated in-situ chemical oxidative polymerization yields a composite material PPy/C in the presence of varying concentrations of pTS. The novelty of the present invention lies in the doping of PPy/C composite with organic anion pTS and consequent enhancement of its electrochemical activity and stability. The conjugation length and electrical conductivity of pTS doped PPy/C composites increase with the increase in dopant concentration. The pTS doped PPy/C composite synthesized using equimolar concentration (0.1 M) of pTS to pyrrole shows the maximum specific capacitance of ˜395 F/g in 0.5 M Na2SO4 aqueous solution with significant stability ˜95% capacitance retention after ˜500 cycles.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 11, 2018
    Assignee: Council of Scientific & Industrial Research
    Inventors: Amit Kumar, Hari Krishna Singh, Rajiv Kumar Singh, Ramadhar Singh, Pankaj Srivastava