Patents Examined by Matthew Reames
  • Patent number: 10090392
    Abstract: A semiconductor device includes a metal oxide semiconductor device disposed over a substrate and an interconnect plug. The metal oxide semiconductor device includes a gate structure located on the substrate and a raised source/drain region disposed adjacent to the gate structure. The raised source/drain region includes a top surface above a surface of the substrate by a distance. The interconnect plug connects to the raised source/drain region. The interconnect plug includes a doped region contacting the top surface of the raised source/drain region, a metal silicide region located on the doped region, and a metal region located on the metal silicide region.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: October 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: I-Chih Chen, Chih-Mu Huang, Ling-Sung Wang, Ying-Hao Chen, Wen-Chang Kuo, Jung-Chi Jeng
  • Patent number: 10090235
    Abstract: According to one embodiment, a semiconductor device includes a board, a sealing portion, a controller, a semiconductor chip, and solder balls. The board includes a first surface and a second surface opposite to the first surface. The controller and the semiconductor chip are covered with the sealing portion. The solder balls are on the second surface of the board. The solder balls include a plurality of solder ball sets each corresponding to a pair of differential input and differential output signals, and the plurality of solder ball sets are arranged substantially parallel to a side of the board.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: October 2, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Isao Ozawa, Isao Maeda, Yasuo Kudo, Koichi Nagai, Katsuya Murakami
  • Patent number: 10090324
    Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: October 2, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 10090398
    Abstract: A method of fabricating a patterned structure of a semiconductor device includes the following steps: providing a substrate having a target layer thereon; forming a patterned sacrificial layer on the target layer, wherein the patterned sacrificial layer consists of a plurality of sacrificial features; forming spacers respectively on sidewalls of each of the sacrificial features, wherein all of the spacers are arranged to have a layout pattern; and transferring the layout pattern to the target layer so as to form a first feature and a second feature, wherein the first feature comprises a vertical segment and a horizontal segment, the second feature comprises a vertical segment and a horizontal segment, and a distance between the vertical segment of the first feature and the vertical segment of the second feature is less than a minimum feature size generated by an exposure apparatus.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 2, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Rai-Min Huang, I-Ming Tseng, Tong-Jyun Huang, Kuan-Hsien Li
  • Patent number: 10090327
    Abstract: Embodiments for forming a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a buried oxide layer formed over the substrate. An interface layer is formed between the substrate and the buried oxide layer. The semiconductor device structure also includes a silicon layer formed over the buried oxide layer; and a polysilicon layer formed over the substrate and in a deep trench. The polysilicon layer extends through the silicon layer, the buried oxide layer and the interface layer.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: October 2, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Kuo-Yu Cheng, Keng-Yu Chen, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hung Chen, Chih-Ping Chao
  • Patent number: 10088339
    Abstract: An automated system and method for detecting substantial edge defects on an object that can degrade or impede proper object performance. The defects, such as chips, cracks, or bumps, if sufficiently substantial, can interfere with the proper operation of the object. The inspection may be performed with four electronic sensors, two on each side of the object, or with two electronic sensors that each take two sets of measurements spaced apart by a certain time interval. Sensor measurements are periodically obtained and used by a controller to calculate a value based on the four sensor measurements. The calculated value is compared to a threshold to determine whether or not any defects are significant.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 2, 2018
    Assignee: Azbil Corporation
    Inventors: Tasuku Imanishi, Shinrin Takahashi
  • Patent number: 10079213
    Abstract: Packaging devices and methods of manufacture thereof for semiconductor devices are disclosed. In some embodiments, a method of manufacturing a packaging device includes forming an interconnect wiring over a substrate, and forming conductive balls over portions of the interconnect wiring. A molding material is deposited over the conductive balls and the substrate, and a portion of the molding material is removed from over scribe line regions of the substrate.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: September 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hsien-Wei Chen, Tsung-Yuan Yu, Ming-Da Cheng, Wen-Hsiung Lu
  • Patent number: 10079331
    Abstract: Various embodiments include semiconductor devices, such as nanowire LEDs, that include a plurality of first conductivity type semiconductor nanowire cores located over a support, a plurality of second conductivity type semiconductor shells extending over and around the respective nanowire cores, and a layer of a high index of refraction material over at least a portion of a surface of at least one of the nanowire cores and the shells, wherein the high index of refraction material has an index of refraction that is between about 1.4 and about 4.5. Light extraction efficiency may be improved.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 18, 2018
    Assignee: GLO AB
    Inventors: Scott Brad Herner, Xiaoming Ji
  • Patent number: 10079295
    Abstract: A method for manufacturing an oxide semiconductor layer, comprising forming an oxide semiconductor layer over an insulating layer so as to be along with a curved surface of a projecting structural body of the insulating layer, wherein a length of the projecting structural body in a height direction is larger than a width of the projecting structural body, is provided.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: September 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Toshinari Sasaki, Shinya Sasagawa, Akihiro Ishizuka
  • Patent number: 10068897
    Abstract: A method of forming a semiconductor device includes providing a semiconductor substrate including a source/drain region, an active transistor region, and a substrate contact region coupled to a body region. A shallow trench isolation (STI) area is formed in a major surface of the semiconductor substrate in between the active transistor region and the substrate contact region. The method further includes at least partially burying at least one capacitor in the STI area.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies AG
    Inventor: Hartmud Terletzki
  • Patent number: 10068779
    Abstract: In accordance with embodiments of the present disclosure, an integrated circuit may include at least one region of shallow-trench isolation field oxide, at least one region of dummy diffusion, and a polycrystalline semiconductor resistor. The at least one region of shallow-trench isolation field oxide may be formed on a semiconductor substrate. The at least one region of dummy diffusion may be formed adjacent to the at least one region of shallow-trench isolation field oxide on the semiconductor substrate. The polycrystalline semiconductor resistor may comprise at least one resistor arm formed with a polycrystalline semiconductor material, wherein the at least one resistor arm is formed over each of the at least one region of shallow-trench isolation field oxide and the at least one region of dummy diffusion.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 4, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: Zhonghai Shi, Vince Deems, Hong Tian
  • Patent number: 10068947
    Abstract: An array of memory cells includes buried access lines having conductively doped semiconductor material. Pillars extend elevationally outward of and are spaced along the buried access lines. The pillars individually include a memory cell. Outer access lines are elevationally outward of the pillars and the buried access lines. The outer access lines are of higher electrical conductivity than the buried access lines. A plurality of conductive vias is spaced along and electrically couple pairs of individual of the buried and outer access lines. A plurality of the pillars is between immediately adjacent of the vias along the pairs. Electrically conductive metal material is directly against tops of the buried access lines and extends between the pillars along the individual buried access lines. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: September 4, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Kunal R. Parekh
  • Patent number: 10068810
    Abstract: A method of forming semiconductor fins having different fin heights and which are dielectrically isolated from an underlying semiconductor substrate. The fins may be formed by etching an active epitaxial layer that is disposed over the substrate. An intervening sacrificial epitaxial layer may be used to template growth of the active epitaxial layer, and is then removed and backfilled with an isolation dielectric layer. The isolation dielectric layer may be disposed between bottom surfaces of the fins and the substrate, and may be deposited, for example, following the etching process used to define the fins. Within different regions of the substrate, dielectrically isolated fins of different heights may have substantially co-planar top surfaces.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 4, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xusheng Wu, Yi Qi, Jianwei Peng, Hsien-Ching Lo, Sipeng Gu
  • Patent number: 10056268
    Abstract: An electronic package includes a carrier, semiconductor chip, a lid, and a lid-ring. The carrier includes a top surface and a bottom surface configured to be electrically connected to a system board. The semiconductor chip is electrically connected to the top surface. The lid is attached to the top surface enclosing semiconductor chip and includes a perimeter recess. The lid-ring is juxtaposed within the perimeter recess. The lid-ring exerts a reverse bending moment upon the lid to limit warpage of the electronic package.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventor: Shidong Li
  • Patent number: 10055631
    Abstract: A sensor package and a method of forming a sensor package are disclosed. The sensor package comprises: a multilayer substrate comprising a mold compound layer and a plurality of patterned metal layers; an embedded die embedded in the multilayer substrate, wherein the mold compound layer of the multilayer substrate surrounds the embedded die; and, a sensing element disposed over the multilayer substrate, the sensing element comprising a first patterned metal layer electrically connected to the embedded die through the multilayer substrate.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 21, 2018
    Assignee: Synaptics Incorporated
    Inventors: Shengmin Wen, Brett Dunlap, Jay Kim
  • Patent number: 10056289
    Abstract: A method of forming a vertical transport fin field effect transistor with self-aligned dielectric separators, including, forming a bottom source/drain region on a substrate, forming at least two vertical fins on the bottom source/drain region, forming a protective spacer on the at least two vertical fins, forming a sacrificial liner on the protective spacer, forming an isolation channel in the bottom source/drain region and substrate between two of the at least two vertical fins, forming an insulating plug in the isolation channel, wherein the insulating plug has a pinch-off void within the isolation channel, and forming the dielectric separator on the insulating plug.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Zuoguang Liu, Sebastian Naczas, Heng Wu, Peng Xu
  • Patent number: 10049932
    Abstract: A semiconductor device includes a substrate having a top surface. A semiconductor circuit defines a circuit area on the top surface of the substrate. An interconnect is spaced apart from the circuit area and extends from the top surface into the substrate. The interconnect includes a sidewall formed of an electrically insulating material. An opening is provided in the sidewall.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: August 14, 2018
    Assignee: Intel Deutschland GmbH
    Inventor: Hans-Joachim Barth
  • Patent number: 10049928
    Abstract: A device includes an interposer, which includes a substrate; and at least one dielectric layer over the substrate. A plurality of through-substrate vias (TSVs) penetrate through the substrate. A first metal bump is in the at least one dielectric layer and electrically coupled to the plurality of TSVs. A second metal bump is over the at least one dielectric layer. A die is embedded in the at least one dielectric layer and bonded to the first metal bump.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ching Shih, Jing-Cheng Lin, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 10049995
    Abstract: A bonding film has at least a left longitudinal branch, and a lower latitudinal branch; a first bonding area is configured in a first branch, and a second bonding area is configured in a second branch. A plurality of outer top metal pads and a plurality of inner top metal pads are exposed on a top surface within each bonding area. A central chip is configured in a central area of the bonding film and is electrically coupled to the inner top metal pad, and at least two peripheral chips are configured neighboring to the central chip and electrically coupled to the outer top metal pads. Each of the inner top metal pads is electrically coupled to a corresponding outer top metal pad through an embedded circuitry. The central chip communicates with the peripheral chips through the inner top metal pad, embedded circuitry, and outer top metal pad of the bonding film.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: August 14, 2018
    Inventor: Dyi-Chung Hu
  • Patent number: 10050076
    Abstract: Various embodiments of a 3D high resolution X-ray sensor are described. In one aspect, an indirect X-ray sensor includes a silicon wafer that includes an array of photodiodes thereon with each of the photodiodes having a contact on a front side of the silicon wafer and self-aligned with a respective grid hole of an array of grid holes that are on a back side of the silicon wafer. Each of the grid holes is filled with a scintillator configured to convert beams of X-ray into light. The indirect X-ray sensor also includes one or more silicon dies with an array of photo-sensing circuits each of which including a contact at a top surface of the one or more silicon dies. Contact on each of the photodiodes is aligned and bonded to contact of a respective photo-sensing circuit of the array of photo-sensing circuits of the one or more silicon dies.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: August 14, 2018
    Assignee: TERAPEDE SYSTEMS INC.
    Inventor: Madhukar B. Vora