Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. The methods may comprise gene-editing at least a portion of the TILs to enhance their therapeutic efficacy. Such TILs find use in therapeutic treatment regimens.
Abstract: Transient MLLT3 overexpression in culture may be used to expand human HSCs in vitro, and thereby improve the efficiency and safety of HSC transplantation.
Type:
Grant
Filed:
June 16, 2017
Date of Patent:
December 19, 2023
Assignee:
The Regents of the University of California
Inventors:
Hanna Mikkola, Vincenzo Calvanese, Andrew T. Nguyen
Abstract: Described herein are biomimetic Janus particles useful as artificial antigen presenting cells capable of activating T cells in vitro. “Bull's eye” ligand patterns mimicking either the native or reverse organization of the T cell immunological synapse are provided on the surface of nano- or micro-sized particles. Methods for activating T cells in vitro using biomimetic Janus particles described herein are also provided. T cells activated by the biomimetic Janus particles can be used in adoptive immunotherapies for treating cancer, tolerance induction in autoimmune disease, autologous immune enhancement therapy, and viral infection immunotherapy. Also described herein are methods for producing a biomimetic Janus particle.
Type:
Grant
Filed:
January 22, 2020
Date of Patent:
December 5, 2023
Assignee:
Indiana University Research and Technology Corporation
Abstract: The disclosure provides a method of producing modified stem memory T cells (e.g. CAR-T cells) for administration to a subject as, for example an adoptive cell therapy.
Abstract: Disclosed is a method for rapidly amplifying CD8+T cells and functional cell subpopulations thereof in vitro. A TLR1/2 agonist, a TLR2/6 agonist and a TLR5 agonist or a combination of above agonists is added to a conventional culture system for in-vitro amplification of CD8+T cells. Recombinant cytokines IL-2, IL-7 and IL-15 as well as magnetic beads coated with an anti-human CD3 antibody and an anti-human CD28 antibody can be further added to the culture system for continuous co-stimulation.
Abstract: Described herein are human transgenic beta cells expressing fugetactic levels of CXCL12 to a subject in need thereof. Also described herein are beta cells comprising a transgene comprising a nucleic acid sequence encoding CXCL12.
Abstract: It is provided a method of expanding ex vivo hematopoietic stem cells (HSC), the method comprising selecting a population of Endothelial Protein C Receptor (EPCR)+ HSC, culturing the selected HSC thereby expanding said EPCR+ HSC and the use of the expanded EPCR+ HSC for stem cells transplantation.
Type:
Grant
Filed:
May 31, 2017
Date of Patent:
August 15, 2023
Assignee:
UNIVERSITE DE MONTREAL
Inventors:
Guy Sauvageau, Iman Fares, Jalila Chagraoui
Abstract: A method to expand hematopoietic stem and progenitor cells (HSPC) wherein the method comprises obtaining an isolated population of HSPC the culturing the isolated population of HSPC in the presence of a histone deacetylase inhibitor (HDAC inhibitor), to form a cultured population, then adding an aminothiol compound to the cultured population.
Abstract: The invention provides an antibody comprising human IgG1 or IgG3 heavy chain constant domains that are glycosylated with a sugar chain at Asn297, said antibody being characterized in that the amount of fucose within said sugar chain is at least 99%, and in addition the amount of NGNA is 1% or less and/or the amount of N-terminal alpha 1,3 galactose is 1% or less, and uses thereof.
Type:
Grant
Filed:
March 3, 2014
Date of Patent:
June 13, 2023
Assignee:
Hoffmann-La Roche Inc.
Inventors:
Silke Hansen, Klaus-Peter Kuenkele, Dietmar Reusch, Ralf Schumacher
Abstract: A method of screening is provided. In certain embodiments, the method involves a) obtaining the nucleotide sequences of: i. a heavy chain-encoding nucleic acid that encodes the variable domain of a heavy chain of a first antibody of an animal; and ii. a light chain-encoding nucleic acid that encodes the variable domain of a light chain of the first antibody; b) obtaining nucleotide sequences of cDNAs encoding at least a portion of the antibody repertoire of the animal; c) computationally screening the sequences obtained in b) to identify heavy and light chain sequences that are related by lineage to the heavy and light chain sequences of a); and d) testing at least one pair of the heavy and light chain sequences identified in c) to identify a second antibody that binds to the same antigen as the first antibody.
Type:
Grant
Filed:
September 25, 2019
Date of Patent:
May 30, 2023
Assignee:
EPITOMICS, INC.
Inventors:
Mark Bushfield, Michael Hadjisavas, Luc Adam
Abstract: Methods of culturing cells capable of producing desired proteins to obtain the proteins by use of a medium from which biological components are excluded as much as possible are provided. Specifically, a culture method characterized by culturing while maintaining a specific amino acid in a culture solution at a high concentration, and a cell culture fed-batch medium for use in the method are provided.
Abstract: Use of a CXCR4 antagonistic peptide and an immune-check point regulator in the treatment of cancer is provided. Accordingly there is provided a method of treating cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide having an amino acid sequence as set forth in SEQ ID NO: 1 or an analog or derivative thereof; and a therapeutically effective amount of a PD1 antagonist, a PDL-1 antagonist, a CTLA-4 antagonist, a LAG-3 antagonist, a TIM-3 antagonist, a KIR antagonist, an IDO antagonist, an OX40 agonist, a CD137 agonist, a CD27 agonist, a CD40 agonist, a GITR agonist, a CD28 agonist or an ICOS agonist, thereby treating the cancer in the subject. Also provided are pharmaceutical compositions and articles of manufacture.
Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to an HLA mismatched recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
Type:
Grant
Filed:
December 20, 2019
Date of Patent:
May 16, 2023
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
Type:
Grant
Filed:
August 3, 2022
Date of Patent:
May 16, 2023
Assignee:
Iovance Biotherapeutics, Inc.
Inventors:
Seth Wardell, James Bender, Michael T. Lotze
Abstract: Use of a CXCR4 antagonistic peptide and an immune-check point regulator in the treatment of cancer is provided. Accordingly there is provided a method of treating cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide having an amino acid sequence as set forth in SEQ ID NO: 1 or an analog or derivative thereof; and a therapeutically effective amount of a PD1 antagonist, a PDL-1 antagonist, a CTLA-4 antagonist, a LAG-3 antagonist, a TIM-3 antagonist, a KIR antagonist, an IDO antagonist, an OX40 agonist, a CD137 agonist, a CD27 agonist, a CD40 agonist, a GITR agonist, a CD28 agonist or an ICOS agonist, thereby treating the cancer in the subject. Also provided are pharmaceutical compositions and articles of manufacture.
Abstract: Use of a CXCR4 antagonistic peptide and an immune-check point regulator in the treatment of cancer is provided. Accordingly there is provided a method of treating cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide having an amino acid sequence as set forth in SEQ ID NO: 1 or an analog or derivative thereof; and a therapeutically effective amount of a PD1 antagonist, a PDL-1 antagonist, a CTLA-4 antagonist, a LAG-3 antagonist, a TIM-3 antagonist, a KIR antagonist, an IDO antagonist, an OX40 agonist, a CD137 agonist, a CD27 agonist, a CD40 agonist, a GITR agonist, a CD28 agonist or an ICOS agonist, thereby treating the cancer in the subject. Also provided are pharmaceutical compositions and articles of manufacture.
Abstract: Use of a CXCR4 antagonistic peptide and an immune-check point regulator in the treatment of cancer is provided. Accordingly there is provided a method of treating cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide having an amino acid sequence as set forth in SEQ ID NO: 1 or an analog or derivative thereof; and a therapeutically effective amount of a PD1 antagonist, a PDL-1 antagonist, a CTLA-4 antagonist, a LAG-3 antagonist, a TIM-3 antagonist, a KIR antagonist, an IDO antagonist, an OX40 agonist, a CD137 agonist, a CD27 agonist, a CD40 agonist, a GITR agonist, a CD28 agonist or an ICOS agonist, thereby treating the cancer in the subject. Also provided are pharmaceutical compositions and articles of manufacture.
Abstract: This invention relates to the expansion of non-haematopoietic tissue-resident ?? T cells in vitro by culturing lymphocytes obtained from non-haematopoietic tissue of humans or non-human animals in the presence of interleukin-2 (IL-2) and/or interleukin-15 (IL-15) and the absence of TCR activation or co-stimulation signals, without any direct contact with stromal or epithelial cells. Methods of non-haematopoietic tissue-resident ?? T cell expansion are provided, as well as populations of non-haematopoietic tissue-resident ?? T cells and uses thereof.
Type:
Grant
Filed:
October 31, 2016
Date of Patent:
April 4, 2023
Inventors:
Adrian Hayday, Oliver Nussbaumer, Richard Woolf
Abstract: Use of a CXCR4 antagonistic peptide and an immune-check point regulator in the treatment of cancer is provided. Accordingly there is provided a method of treating cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptide having an amino acid sequence as set forth in SEQ ID NO: 1 or an analog or derivative thereof; and a therapeutically effective amount of a PD1 antagonist, a PDL-1 antagonist, a CTLA-4 antagonist, a LAG-3 antagonist, a TIM-3 antagonist, a KIR antagonist, an IDO antagonist, an OX40 agonist, a CD137 agonist, a CD27 agonist, a CD40 agonist, a GITR agonist, a CD28 agonist or an ICOS agonist, thereby treating the cancer in the subject. Also provided are pharmaceutical compositions and articles of manufacture.
Abstract: In one aspect, methods of generating human monoclonal antibodies that specifically binds to an allergen are provided. In some embodiments, the monoclonal antibodies are generated from sequences identified from isolated single B cells from a human subject who is allergic to the allergen.
Type:
Grant
Filed:
June 17, 2021
Date of Patent:
March 28, 2023
Assignees:
CZ Biohub SF, LLC., The Board of Trustees of the Leland Stanford Junior University
Inventors:
Derek Croote, Stephen R. Quake, Kari Nadeau, Spyros Darmanis, David N. Cornfield