Abstract: Problems to be Solved The present invention provides an affinity support capable of trapping a substance by cooperative binding that is less likely to cause dissociation even when the substance is a molecule other than an antibody, and a trapping method using the same. Means to Solve the Problems A method of trapping a substance comprising the step of contacting an objective to be trapped with an affinity support comprising a support, a spacer bound to the support and an affinity substance bound to the spacer, so as to bind the objective to be trapped to the affinity substance, wherein each one of the objective to be trapped has a plural of affinity sites and the affinity substance binds to at least two of the affinity sites simultaneously.
Abstract: The invention is related to the field of biotechnology, specifically to the investigation of biomolecular interactions and sensing of biomolecules using a surface plasmon resonance. The biological sensor and a method of its production based on the thin films of graphene, graphene oxide, or single-walled or multi-walled carbon nanotubes are described. The technical results of the invention are a high sensitivity of the biosensor in combination with a high biospecificity; an expansion of the range of device applications; the protection of the metal film from an environmental exposure; the possibility to detect large biological objects.
Type:
Grant
Filed:
August 8, 2017
Date of Patent:
March 30, 2021
Assignee:
MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY (STATE UNIVERSITY)
Abstract: Methods, systems, compositions and kits are provided for the analysis of target molecules using chromophoric polymer dots conjugated to biomolecules. The use of chromophoric polymer dots improves detection sensitivity and stability when compared with existing techniques. In some aspects, methods, systems, and kits are provided for detecting a target protein using chromophoric polymer dots conjugated to biomolecules in a Western blot analysis. Related methods, systems, compositions and kits are also provided.
Abstract: The present invention relates to a simultaneous analysis method for a target using a plurality of metal nano-tags and, more particularly, to a simultaneous analysis method for a target using a plurality of metal nano-tags, wherein the method fuses a nano-particle technology on the basis of an antigen-antibody reaction, which is a conventional biological immune response, and simultaneously diagnoses a plurality of target materials by using a plurality of antigen-antibody reactions and a plurality of metal nano-tags, thereby enhancing diagnostic effect.
Abstract: A sensor for detecting an analyte can include a photoluminescent nanostructure embedded in a sensor hydrogel. The sensor hydrogel can be supported by a substrate hydrogel.
Abstract: A method for assaying endoglycosidase activity includes providing a proteoglycan having a glycosaminoglycan chain with a non-reducing end; treating the proteoglycan with a glycosyltransferase to incorporate a carbohydrate into the non-reducing end of the glycosaminoglycan chain, wherein the carbohydrate includes a click chemistry moiety; adding a label to the proteoglycan, wherein the label includes a click chemistry moiety that reacts to the click chemistry moiety of the carbohydrate such that the label attaches to the carbohydrate to form a labeled proteoglycan; immobilizing the labeled proteoglycan on a multi-well plate, wherein the multi-well plate includes a specific anti-proteoglycan antibody for binding the labeled proteoglycan; treating the labeled proteoglycan with an endoglycosidase specific to the glycosaminoglycan chain; and detecting the labeled proteoglycan.
Type:
Grant
Filed:
October 5, 2017
Date of Patent:
January 12, 2021
Assignee:
BIO-TECHNE CORPORATION
Inventors:
Zhengliang L. Wu, Xinyi Huang, Cheryl M. Ethen
Abstract: An object of the present invention is to provide a kit for quantitatively determining a bile acid, in which it is possible to improve measurement accuracy by sufficiently dissociating the bile acid from a polymer component, and to rapidly carry out the quantitative determination of the bile acid with high accuracy under various environments, and a method for quantitatively determining the bile acid. According to the present invention, a kit for quantitatively determining a bile acid in a biological sample, including a compound represented by General Formula (I) defined in the present specification in a dry state; a fluorescent particle that has a first binding substance capable of binding to the bile acid; and a substrate that has a detection region having a second binding substance capable of binding to any one of the bile acid and the first binding substance, is provided.
Type:
Grant
Filed:
August 29, 2018
Date of Patent:
January 5, 2021
Assignee:
FUJIFILM Corporation
Inventors:
Noriyuki Kasagi, Hiroyuki Chiku, Ayumi Era
Abstract: Disclosed is a platform detecting glycated hemoglobin as an indicator for diabetes in the blood based on upconverting nanoparticles excited by near-infrared light and luminescence resonance energy transfer.
Type:
Grant
Filed:
December 28, 2015
Date of Patent:
December 22, 2020
Assignee:
GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
Inventors:
Min-Gon Kim, Hyo-Young Mun, Eun-Jung Jo
Abstract: An assay device including a loading zone for a sample that may contain an analyte, an activator in communication with the loading zone from which at least one activator is displaced by presence of the analyte, an amplifier in an inactive state in communication with the activator that becomes activated in the presence of the activator, a biomatrix barrier in communication with the activated amplifier that is degraded or modified by the activated amplifier, and an indicator responsive to the degradation or modification of the biomatrix barrier, which in turn reflects a concentration of the analyte in the sample loaded on the device. The selection of analyte or displacement of the activator by presence of the analyte may occur off-platform and/or may rely on use of non-covalent interactions. The activator may include an enzyme or other reagent that activates the amplifier. Also, associated methods.
Abstract: Uses of ethyl 5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate as a fluorescent ligand probe, preferably in a binding assay for quantitative analysis in combination with a recombinant aryl hydrocarbon receptor (AhR) protein. A method for detection or quantitative analysis of suspected aryl hydrocarbon receptor (AhR) ligands in a sample, the method comprising the steps of: (a) providing a sample possibly containing at least one known or unknown AhR ligand; (b) mixing said sample with a composition comprising a recombinant AhR protein bound to ethyl 5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate; and (c) determining the presence or the total amount of said at least one known or unknown AhR ligand in the sample by fluorescence spectroscopy. Use e.g.
Type:
Grant
Filed:
March 3, 2016
Date of Patent:
November 10, 2020
Assignee:
THE EUROPEAN UNION, REPRESENTED BY THE EUROPEAN COMMISSION
Abstract: The present invention relates to a method for detecting cell death using a luminescent compound; to the luminescent compounds for particular uses; to a kit comprising said compounds and to a protein. The method is applicable for detecting cell death, essentially regardless of the mechanism through which cell death occurred or is occurring and is therefore not limited e.g. to detecting cell death resulting from only one mechanism selected from apoptosis and necrosis.
Type:
Grant
Filed:
February 6, 2013
Date of Patent:
November 10, 2020
Inventors:
Markwin Hendrik Maring, Clemens Waltherus Gerardus Löwik, Ermond Reijer Van Beek
Abstract: The present invention provides the following: a method for efficiently producing a reagent for detecting an antibody that specifically binds with an insoluble antigen protein present in a liquid sample; a reagent for antibody detection produced by the production method; and a use of the antibody. In a step for solubilizing an antigen protein, it is possible to efficiently solubilize and recover the antigen protein by using a cationizing agent; therefore, when compared to conventional methods, it is possible to efficiently produce a reagent for detecting an antibody that has bound to multiple antigen protein molecules in a carrier.
Abstract: The present invention relates to a method for measuring the cholesterol uptake capacity of lipoproteins. The present invention also relates to a reagent kit for measuring the cholesterol uptake capacity of lipoproteins. The present invention further relates to a tagged cholesterol which can be used in the method and the reagent kit.
Abstract: The present invention relates to reagents and methods for binding compounds to surfaces that are hydrophobic. More specifically, the invention relates to simple methods for coating of hydrophobic planar, membrane or particle surfaces to facilitate binding of molecules such as labels, dyes, synthetic and biological polymers and/or nanoparticles thereto.
Abstract: Methods are disclosed for tethering a biological entity to a substrate comprising: (a) forming a supported lipid bilayer on a surface of a substrate, wherein the supported lipid bilayer comprises an anchor molecule conjugated to a first affinity tag that is present in the lipid bilayer at a concentration greater than or equal to 5 mole percent; and (b) contacting the supported lipid bilayer with a biological entity, wherein the biological entity comprises an nonlinear-active label and a second affinity tag capable of binding to the first affinity tag, thereby tethering the biological entity to the supported lipid bilayer in an oriented fashion.
Abstract: The invention features shaped articles containing a structure and a hydrogel coating thereon, the hydrogel coating containing alginic acid conjugated to a polyalkylene oxide and a binding moiety. The hydrogel coating on the structure is sized and shaped to fit in a well in a microtiter plate and the coating does not cover the entire exterior of the surface. The invention further features methods of capturing targets using shaped articles and methods of preparing shaped articles.
Type:
Grant
Filed:
March 24, 2015
Date of Patent:
August 11, 2020
Assignee:
QT Holdings Corp
Inventors:
Sean H. Kevlahan, Brian D. Plouffe, Jeffrey A. Zonderman
Abstract: There is provided a test strip assembly for detecting the possible presence of at least one analyte in a sample, a device for detecting the possible presence of at least one analyte in a sample comprising the test strip assembly and methods of detecting the possible presence of at least one analyte in a sample using the device.
Type:
Grant
Filed:
August 28, 2015
Date of Patent:
August 11, 2020
Assignee:
Agency for Science, Technology and Research
Abstract: Disclosed is an antibody which binds to olanzapine, which can be used to detect olanzapine in a sample such as in a competitive immunoassay method. The antibody can be used in a lateral flow assay device for point-of-care detection of olanzapine, including multiplex detection of aripiprazole, olanzapine, quetiapine, and risperidone in a single lateral flow assay device.
Type:
Grant
Filed:
May 9, 2017
Date of Patent:
July 14, 2020
Assignee:
Janssen Pharmaceutica NV
Inventors:
Eric Hryhorenko, Banumathi Sankaran, Thomas R. DeCory, Theresa Tubbs, Linda Colt, Bart M. Remmerie, Rhys Salter, Matthew Garrett Donahue, Yong Gong
Abstract: The present invention provides a sandwich assay for quantifying a glycoprotein, which is a substance to be detected, in a sample using a labeled lectin, wherein the effect attributed to a contaminant, namely noise on the quantified value of the substance to be detected, is suppressed by introduction of a simple treatment. The sandwich assay includes a treatment for inhibiting the binding of the labeled lectin to a sugar chain carried by the contaminant non-specifically adsorbed to the measurement region, which contaminant is contained in the sample and which sugar chain is the same as that of the substance to be detected.
Abstract: A toner composite material includes toner particles that include a sulfonated polyester and a wax and metal nanoparticles disposed on the surface of the toner particles. A method includes providing such toner composite materials, fusing the material to a substrate and covalently linking a ligand to the surface of the silver nanoparticles via a thiol, carboxylate, or amine functional group. Detection strips include a substrate and such toner composite materials fused on the substrate.
Type:
Grant
Filed:
September 5, 2018
Date of Patent:
June 16, 2020
Assignee:
XEROX CORPORATION
Inventors:
Valerie M. Farrugia, Wendy Chi, Sandra J. Gardner