Abstract: A toner composite material includes toner particles that include a sulfonated polyester and a wax and metal nanoparticles disposed on the surface of the toner particles. A method includes providing such toner composite materials, fusing the material to a substrate and covalently linking a ligand to the surface of the silver nanoparticles via a thiol, carboxylate, or amine functional group. Detection strips include a substrate and such toner composite materials fused on the substrate.
Type:
Grant
Filed:
September 5, 2018
Date of Patent:
June 16, 2020
Assignee:
XEROX CORPORATION
Inventors:
Valerie M. Farrugia, Wendy Chi, Sandra J. Gardner
Abstract: Methods of reversibly inducing proximity of first and second target molecules in a sample are provided. Aspects of the methods include contacting the sample with a modifiable chemical inducer of proximity (MCIP) that reversibly induces proximity of the first and second target molecules, upon application of a stimulus that modifies the MCIP. Aspects of the invention further include methods for regulating a biological process in a cell. Aspects of the invention further include compositions, e.g., compounds and kits, etc., that find use in methods of the invention.
Abstract: The present invention relates to a composition in which a conducting polymer is doped with a dopant, and a diagnostic apparatus, and more particularly, to a composition which is used to diagnose a disease and detect a biomaterial and also used for qualification and diagnosis by effectively and non-destructively collecting a captured biomaterial. Further, the composition can maximize capturing efficiency by being attached to a surface of a nano-structured scaffold and can be used as an ultrahigh-sensitive sensor using various linked bodies.
Abstract: A problem of the present invention is to provide a method capable of avoiding nonspecific reactions which result in the absence of agglutination that should occur in agglutination inhibition LTIA. The present invention provides a method of avoiding nonspecific reactions in a latex agglutination inhibition test by performing a latex agglutination inhibition assay in the presence of one or more compounds selected from the group consisting of polyoxyethylene-polyoxypropylene block copolymers, polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters, and polyvalent quaternary amine polymer compounds.
Abstract: A composition for enzyme immunoassay using immunofluorescence comprises (i) a fluorogenic enzymatic substrate and (ii) a quenched fluorogenic compound that forms a fluorescent compound after hydrolysis of the fluorogenic enzymatic substrate. The composition may be useful for performing a method for in vitro detection and/or quantification of an analyte of a liquid test sample liable to contain the analyte.
Type:
Grant
Filed:
October 16, 2015
Date of Patent:
March 31, 2020
Assignee:
BIOMERIEUX
Inventors:
Aldo Paolicchi, Antonio Sanesi, Veronica Lucia Rossi, Andrea Ienco, Vanessa Susini
Abstract: A reduced graphene oxide-based biosensor includes a nano-structure field-effect transistor including a channel region which includes a reduced graphene oxide having a linking moiety to be bonded to a receptor specific to an analyte, and which is represented by a formula of —(C?O)—X—COOH, wherein X represents a C1-C3 alkenylene group or a C1-C3 alkylene group.
Abstract: Mycolic acid antigen containing liposomes, and an electrode immobilised antigens of tuberculous mycobacterial origin are produced. A diagnostic sample from a human suspected of having tuberculosis is diluted and divided into first and second samples. A control sample comprising the first sample and a redox probe is exposed to the liposomes. A test sample comprising the second sample and a redox probe is exposed to liposomes not containing mycolic acid antigens. The control sample is contacted with the immobilised antigens to allow antibodies therein to bind to the antigens. The test sample is contacted with the immobilised antigens to allow any antibodies therein to bind to the antigens. The degree of binding in the samples is compared by electrochemical impedance spectroscopy. Any observed lesser binding by the control sample is an indicator of antibodies to the antigens in the diagnostic sample, indicating tuberculosis in the human.
Type:
Grant
Filed:
May 15, 2014
Date of Patent:
February 4, 2020
Assignee:
University of Pretoria
Inventors:
Jan Adrianus Verschoor, Carl Baumeister
Abstract: Provided is a method for detecting a stem cell based on an undifferentiated sugar chain marker having a specific sugar chain structure, wherein the stem cell is detected by detecting podocalyxin contained in a culture supernatant or a lysate of cells by a “lectin-antibody sandwich method” using a combination of a lectin and an antibody and having high sensitivity, the method including steps of: contacting the culture supernatant or the lysate, a lectin capable of binding to a sugar chain represented by (Formula 1) or (Formula 2), and an antibody capable of binding to keratan sulfate to form a complex composed of the lectin, podocalyxin and the antibody; and detecting the complex. wherein R1 represents an OH group or any sugar chain and R2 represents an OH group or any sugar chain, protein, lipid, or another molecule. wherein R1 represents an OH group or any sugar chain and R2 represents an OH group or any sugar chain, protein, lipid, or another molecule.
Type:
Grant
Filed:
December 21, 2015
Date of Patent:
January 21, 2020
Assignees:
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, FUJIFILM WAKO PURE CHEMICAL CORPORATION
Abstract: An antigen detection method detects an antigen having a specific sugar chain in a sample with a lectin that binds to plural kinds of sugar chains including the specific sugar chain. The detection method includes: a first step of bringing the lectin into contact with the sample; a second step of bringing a glycohydrolase capable of cleaving at least one kind of sugar chain to which the lectin can bind into contact with the sample, the at least one kind of sugar chain excluding the specific sugar chain among the plural kinds of sugar chains; and a step of detecting the antigen bound with the lectin after the first and second steps.
Abstract: Lyophilized chromophoric polymer dot compositions are provided. Also disclosed are methods of making and using the lyophilized compositions, methods of dispersing the lyophilized compositions in aqueous solutions and kits supplying the compositions.
Type:
Grant
Filed:
March 14, 2014
Date of Patent:
December 24, 2019
Assignee:
UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
Inventors:
Daniel T. Chiu, Wei Sun, Jiangbo Yu, Changfeng Wu, Fangmao Ye
Abstract: A method of producing a labeled antibody, including the steps of: a) allowing silica nanoparticles containing a functional molecule and having a thiol group on a surface thereof, and a linker molecule containing a maleimido group and an amino group, to coexist in a solvent to form a thioether bond between the thiol group and the maleimido group, thereby obtaining functional molecule-containing silica nanoparticles on which the linker molecule is bonded; and b) allowing the functional molecule-containing silica nanoparticles on which the linker molecule is bonded, carbodiimide and an antibody to coexist in an aqueous solvent to form an amide bond between the amino group of the linker molecule and a carboxyl group of the antibody.
Abstract: The present invention provides a staining method in which the fluorescent staining properties in a fluorescently-immunostained specimen are not reduced even when an oil-based mounting medium is used. The present invention also provides a method of preventing deterioration of a fluorescent label caused by irradiation with excitation light and improving the light resistance in a fluorescently-immunostained specimen obtained by the staining method. The biological substance detection method according to the present invention is a biological substance detection method for specifically detecting a biological substance from a pathological specimen, which includes the steps of: immunostaining the specimen with a fluorescent label; immobilizing the thus stained specimen; and mounting the thus immobilized specimen using a mounting medium including an organic solvent not freely miscible with water.
Abstract: A device for capturing preselected cell types from a fluid sample that includes a plurality of cell types includes a substrate, a plurality of nanowires at least one of attached to or integral with a surface of the substrate such that each nanowire of the plurality of nanowires has an unattached end, and a layer of temperature-responsive material formed on at least the unattached end of each of the plurality of nanowires. The layer of temperature-responsive material has a compact configuration at a first temperature and an expanded configuration at a second temperature so as to facilitate release of cells captured at the first temperature to be released at the second temperature.
Type:
Grant
Filed:
July 31, 2013
Date of Patent:
October 15, 2019
Assignees:
The Regents of the University of California, Riken
Abstract: A method for detecting an analyte in a sample, the method comprising contacting the analyte in a sample with nanoparticles comprising a capture probe for capturing said analyte, the capture probe being configured to act as a center for controlled aggregation of nanoparticles with said analyte to form an aggregate of predefined form, detecting the analyte by detecting the shape and/or size of the aggregate is provided. Also provided are nanoparticles comprising a capture probe for capturing an analyte, wherein the capture probe is configured to act as a center for controlled aggregation of nanoparticles with the analyte to form an aggregate of particular detectable size and/or shape, and an assay.
Type:
Grant
Filed:
December 5, 2012
Date of Patent:
October 8, 2019
Assignee:
University College Dublin, National University of Ireland, Dublin
Abstract: The present invention relates to a piezoelectric mechanical system (PEMS) microcantilever sensor that both detects the presence of viral RNA in an aqueous solution, such as a blood sample. The method provides for the formation of the sensor by attaching RNA, DNA, or an antibody to the microcantilever sensor surface via a hydrazone or an oxime chemical bond. The method provides for the detection of viral RNA viruses and viral DNA viruses upon the chemical binding/bonding of single-stranded viral nucleic acid to the microcantilever sensor surface. The method provides for the detection of DNA cancer mutations or variants that have been identified in a cancer cell upon the chemical binding/bonding of single-stranded DNA to the microcantilever sensor surface.
Abstract: It is intended to develop and provide a method for detecting a particular glycan-isoform rapidly and specifically by a small number of steps. The present invention provides a glycan-isoform detection method comprising quantifying an immune complex formed by the mixing of a test sample with a sugar chain non-reducing terminal residue-binding lectin and an antibody specifically binding to the protein moiety of the glycan-isoform, etc., comparing the obtained amount of the immune complex with the amount of a control immune complex obtained when a control sample is not mixed with the sugar chain non-reducing terminal residue-binding lectin or is mixed with a control protein, and determining the presence or absence of the glycan-isoform of interest in the test sample on the basis of the difference between these amounts.
Type:
Grant
Filed:
August 9, 2013
Date of Patent:
July 16, 2019
Assignee:
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
Abstract: Anti-carbohydrate antibodies are detected by (a) contacting an array of oligomannose-serum albumin conjugates immobilized on a substrate with an antibody-containing serum sample under conditions wherein TM10 antibodies bind the oligomannose of the conjugates at at least micromolar affinity; and (b) detecting resultant binding of specific antibodies of the sample to the oligomannose of the conjugates, as indicative of the anti-carbohydrate antibodies.
Abstract: The present invention relates to a method of capturing, enriching, purifying, detecting or measuring a cell in a sample at a sub-nanogram level comprising providing a nanocomposition, contacting the sample with the nanocomposition to form a mixture solution and allowing the binding of the cell with the nanocomposition, applying a magnetic field to the mixture, and evaluating the presence of or absence of the cell. The nanocomposition is capable of capturing or enriching an analyte at a sub-nanogram level, and comprise a nanostructure operably linked to an analyte-capturing member.
Abstract: The present invention relates to microparticles for analyzing biomolecules, a biomolecule analysis kit comprising the microparticles, and a method for analyzing biomolecules using the analysis kit, the microparticles for analyzing biomolecules comprising: a core including at least one selected from among an optical expression substance, a metallic material, and a magnetic material; a silica coating layer formed on the core; and at least one binding means, linked to the silica coating layer, for binding to an analysis subject biomolecule, wherein the optical expression substance is a fluorescent or a luminescent.