Patents Examined by Nicholas Wang
  • Patent number: 11851727
    Abstract: The present invention relates to steel used for a sash component and the like of a vehicle and, more specifically, to a hot-rolled steel sheet for a high-strength electric resistance welded steel pipe having excellent expandability and a method for manufacturing same, the hot-rolled steel sheet having a smaller decrease in the strength of a welding heat-affected zone (HAZ) formed during electric resistance welding, in comparison with a base material.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: December 26, 2023
    Assignee: POSCO Co., Ltd.
    Inventors: Hyun-Taek Na, Seok-Jong Seo
  • Patent number: 11851763
    Abstract: The present disclosure generally relates to methods and apparatuses for chemical vapor deposition (CVD) during additive manufacturing (AM) processes. Such methods and apparatuses can be used to embed chemical signatures into manufactured objects, and such embedded chemical signatures may find use in anti-counterfeiting operations and in manufacture of objects with multiple materials.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: December 26, 2023
    Assignee: General Electric Company
    Inventor: Scott Alan Gold
  • Patent number: 11846010
    Abstract: A method for making an aluminum alloy includes steps of (1) weighing out starting materials to achieve a mass of material having a composition that includes aluminum, about 1.8 to about 5.6 percent by weight copper, about 0.6 to about 2.6 percent by weight lithium, and at least one of lanthanum up to about 1.5 percent by weight, strontium up to about 1.5 percent by weight, cerium up to about 1.5 percent by weight, and praseodymium up to about 1.5 percent by weight; (2) loading said starting materials into a crucible; (3) inserting said crucible into a chamber; (4) evacuating said chamber to a predetermined vacuum level; (5) melting said starting materials to form a molten mass; and (6) casting said molten mass into a mold.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: December 19, 2023
    Assignee: The Boeing Company
    Inventors: Austin E. Mann, Andrew H. Baker, Rajiv Mishra, Sivanesh Palanivel
  • Patent number: 11827948
    Abstract: A method for producing a coated steel sheet having a tensile strength TS of at least 1100 MPa, a total elongation TE according to ISO standard 6892-1 of at least 12%, the product TSxTE of the tensile strength by the total elongation being at least 14200 MPa %, and a hole expansion ratio HER according to ISO standard 16630:2009 of at least 25%, the method including the following successive steps: providing a cold-rolled steel sheet, the chemical composition of the steel containing in weight %: 0.15%?C?0.23%, 2.0%?Mn?2.7%, with C+Mn/10?0.420%, 0?Cr?0.40%, with Mn+Cr?2.25%, 0.2%?Si?1.6%, 0.02%?Al?1.2%, with 1.0%?Si+Al?2.2%, 0?Nb?0.035%, 0?Mo?0.1%, the remainder being Fe and unavoidable impurities, annealing the steel sheet at an annealing temperature TA so as to obtain a structure comprising at least 65% of austenite and at most 35% of intercritical ferrite, quenching the sheet from a temperature of at least 600° C. at a cooling rate comprised between 20° C./s and 50° C.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 28, 2023
    Assignee: ARCELORMITTAL
    Inventors: Maya Gospodinova, Véronique Hebert
  • Patent number: 11819915
    Abstract: A bonding member that includes a resin body defining an airtight interior, and a bonding material enclosed in the interior of the resin body. The bonding material is a mixed powder that includes a plurality of particles of a first metal powder and a plurality of particles of a second metal powder. The second metal powder reacts with the first metal powder when melted to thereby produce an intermetallic compound. The resin body has a melting point higher than a softening point of the mixed powder.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: November 21, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Seitaro Washizuka
  • Patent number: 11814707
    Abstract: This soft magnetic powder is represented by composition formula FeaSibBcPdCue with the exception of unavoidable impurities. In the composition formula, a, b, c, d and e satisfy 79?a?84.5 at %, 0?b<6 at %, 4?c?10 at %, 4<d?11 at %, 0.2?e<0.4 at %, and a+b+c+d+e=100 at %.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 14, 2023
    Assignees: TOKIN CORPORATION, JFE STEEL CORPORATION
    Inventors: Akiri Urata, Miho Chiba, Mineo Muraki, Makoto Nakaseko, Takuya Takashita
  • Patent number: 11807910
    Abstract: Provided is an austenitic alloy pipe, which has high yield strength, excellent SCC resistance, suppressed strength anisotropy, and high detectability in ultrasonic flaw detection. The austenitic alloy pipe according to the present embodiment has a chemical composition consisting of: in mass %, C: 0.004 to 0.030%, Si: 1.00% or less, Mn: 0.30 to 2.00%, P: 0.030 or less, S: 0.0020% or less, Al: 0.001 to 0.100%, Cu: 0.50 to 1.50%, Ni: 25.00 to 55.00%, Cr: 20.00 to 30.00%, Mo: 2.00 to 10.00%, and N: 0.005 to 0.100%, with the balance being Fe and impurities. A grain size number of austenite crystal grain is 2.0 to 7.0 and a mixed grain ratio is not more than 5%. Tensile YS is not less than 758 MPa, compressive YS/tensile YS is 0.85 to 1.10, and an outer diameter is not less than 170 mm.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 7, 2023
    Assignee: Nippon Steel Corporation
    Inventors: Masaki Ueyama, Yusaku Tomio, Yuhei Suzuki
  • Patent number: 11802319
    Abstract: A double oriented electrical steel sheet includes: 2.0 to 6.0% of Si, 0.0005 to 0.04% of Al, 0.0001 to 0.003% of S, 0.02 to 1.0% of Mn, equal to or less than 0.003% of N, excluding 0%, equal to or less than 0.01% of C, excluding 0%, equal to or less than 0.01% of Ti excluding 0%, 0.005 to 0.10% of P as wt %, and a remainder including Fe and inevitable impurities. Such a double oriented electrical steel sheet satisfies Formula 1: [Mn]/[S]?60,??[Formula 1] where, [Mn] and [S] are contents (wt %) of Mn and S, respectively.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 31, 2023
    Assignee: POSCO CO., LTD
    Inventors: Seil Lee, Sang-Woo Lee, Su-Yong Shin
  • Patent number: 11801554
    Abstract: An additive manufacturing method includes cold spraying a powder onto a build area to create a densified powder layer. The method can include high speed machining the densified powder layer after cold spraying to create a smooth layer.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: October 31, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Eric W. Karlen
  • Patent number: 11780160
    Abstract: A three-dimensional object may be manufactured using a powder bed fusion additive manufacturing technique. A layer of powder feed material may be distributed over a solid substrate and scanned with a high-energy laser beam to locally melt selective regions of the layer and form a pool of molten feed material. The pool of molten feed material may be exposed to gaseous nitrogen, carbon, or boron to respectively dissolve nitride, carbide, or boride ions into the pool of molten feed material to produce a molten nitrogen, carbon, or boron-containing solution. The molten nitrogen, carbon, or boron-containing solution may cool and solidify into a solid layer of fused nitride, carbide, or boride-containing material.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: October 10, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil K Sachdev, Frederick E Pinkerton, Raja K Mishra, Tyson W Brown
  • Patent number: 11780007
    Abstract: Method for manufacturing an aluminium alloy part by additive manufacturing comprising a step during which a layer of a mixture of powders is locally melted and then solidified, characterised in that the mixture of powders comprises: first particles comprising at least 80% by mass of aluminium and up to 20% by mass of one or more additional elements, and second yttria-stabilized zirconia particles, the mixture of powders comprising at least 1.5% by volume of second particles.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: October 10, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Mathieu Opprecht, Jean-Paul Garandet, Guilhem Roux, Mathieu Soulier
  • Patent number: 11779894
    Abstract: Some variations provide a system for producing a functionalized powder, comprising: an agitated pressure vessel; first particles and second particles contained within the agitated pressure vessel; a fluid contained within the agitated pressure vessel; an exhaust line for releasing the fluid from the agitated pressure vessel; and a means for recovering a functionalized powder containing the second particles disposed onto surfaces of the first particles. A preferred fluid is carbon dioxide in liquefied or supercritical form. The carbon dioxide may be initially loaded into the pressure vessel as solid carbon dioxide. The pressure vessel may be batch or continuous and is operated under reaction conditions to functionalize the first particles with the second particles, thereby producing a functionalized powder, such as nanofunctionalized metal particles in which nanoparticles act as grain refiners for a component ultimately produced from the nanofunctionalized metal particles.
    Type: Grant
    Filed: June 2, 2018
    Date of Patent: October 10, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Brennan D. Yahata, Robert Mone
  • Patent number: 11773465
    Abstract: Disclosed herein is a light-gauge, ultra-high strength weathering steel sheet with a composition, material properties, and surface characteristics that make it suitable for hot-stamping applications and making hot-stamped products. Also disclosed herein is a high friction rolled carbon alloy steel strip free of prior austenite grain boundary depressions and having a smear pattern. Still further disclosed herein is a high friction rolled carbon alloy steel strip that has been surface homogenized to provide a thin cast steel strip free of a smear pattern.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: October 3, 2023
    Assignee: NUCOR CORPORATION
    Inventors: Kishlay Mishra, Paul Kelly, Tao Wang
  • Patent number: 11773461
    Abstract: A martensitic stainless steel seamless pipe for oil country tubular goods having a yield stress of 758 MPa or more, and excellent sulfide stress corrosion cracking resistance, and a method for manufacturing the same. The martensitic stainless steel seamless pipe has a composition that contains, by mass %, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0%, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less, Ti: 0.255 to 0.500%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0%, and the balance being Fe and incidental impurities. C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti satisfy a predetermined relationship.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 3, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Mami Endo, Yuichi Kamo, Masao Yuga
  • Patent number: 11772163
    Abstract: The present disclosure is drawn to a three-dimensional printing system can include a powder bed material, including from 80 wt % to 100 wt % metal particles having a D50 particle size distribution value ranging from 5 ?m to 75 ?m and a powder bed support substrate for receiving the powder bed material. The system can also include a fluid ejector operable to digitally deposit a thermally sensitive binder fluid onto a selected portion of the powder bed material on the powder bed support substrate. The thermally sensitive binder fluid can include water, a reducible metal compound, and a thermally activated reducing agent. A light source can also be present to generate a pulse energy sufficient to cause the thermally activated reducing agent to reduce the reducible metal compound and bind metal particles together to form a green three-dimensional part.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: October 3, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Krzysztof Nauka, Paul Olubummo
  • Patent number: 11767573
    Abstract: A ferritic stainless steel sheet comprises a chemical composition containing, in mass %, C: 0.030% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.010% or less, Cr: 11.0% to 30.0%, Al: 8.0% to 20.0%, Ni: 0.05% to 0.50%, N: 0.020% or less, and at least one selected from the group consisting of Zr: 0.01% to 0.20% and Hf: 0.01% to 0.20%, with a balance consisting of Fe and inevitable impurities.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 26, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Akito Mizutani, Rinta Sato, Mitsuyuki Fujisawa
  • Patent number: 11759861
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 19, 2023
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Adam Garret Susong, Peter Pontiller-Schymura
  • Patent number: 11759863
    Abstract: In an example of a three-dimensional (3D) printing method, a metallic build material is applied. A patterning fluid, including a metal salt, is selectively applied on at least a portion of the metallic build material. Prior to an application of additional build material, the metallic build material is exposed to light irradiation to cause the metal salt to reach a thermal decomposition temperature and thermally decompose to a metal. During the exposing, the metallic build material is maintained below a sintering temperature of the metallic build material.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 19, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Krzysztof Nauka, Thomas Anthony
  • Patent number: 11752557
    Abstract: In one example, a system for loading a build material powder supply container for 3D printing includes a dispenser to dispense a build material powder into a supply container, a device to measure a density of the build material powder in the supply container, a compactor to compact the build material powder in the supply container, and a controller operatively connected to the measuring device and the compactor. The controller is programmed to control the compactor to compact the build material powder in the supply container until a measured density reaches a threshold density.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: September 12, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jorge Diosdado Borrego, David Chanclon Fernandez, Pablo Antonio Murciego Rodriguez
  • Patent number: 11756713
    Abstract: A grain-oriented magnetic steel sheet with chromium-free insulating tension coating includes a grain-oriented magnetic steel sheet and an insulating tension coating containing a phosphate salt and silica on a surface of the grain-oriented magnetic steel sheet, the coating further including a crystalline compound represented by the general formula (1): MII3MIII4(XVO4)6 . . . (1). A method for producing a grain-oriented magnetic steel sheet with chromium-free insulating tension coating includes applying an insulating tension coating liquid to a surface of a finish annealed grain-oriented magnetic steel sheet, the coating liquid including colloidal silica, a phosphate salt and a metal element M-containing compound in a specific ratio, and heat treating the steel sheet at least one time at a temperature of not less than 900° C. in an atmosphere including a non-oxidizing gas and having a dew point of not more than 0° C.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 12, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Souichiro Yoshizaki, Makoto Watanabe, Ryuichi Suehiro