Patents Examined by Ori Nadav
  • Patent number: 10366896
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to form a second spacer.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: I-Fan Chang, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, Jie-Ning Yang, Chi-Ju Lee, Chun-Ting Chiang, Bo-Yu Su, Chih-Wei Lin, Dien-Yang Lu
  • Patent number: 10361233
    Abstract: A circuit structure includes a semiconductor substrate having a top surface. A dielectric material extends from the top surface into the semiconductor substrate. A high-k dielectric layer is formed of a high-k dielectric material, wherein the high-k dielectric layer comprises a first portion on a sidewall of the dielectric material, and a second portion underlying the dielectric material.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Tzu-Jui Wang, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 10333064
    Abstract: This disclosure provides embodiments for the formation of vertical memory cell structures that may be implemented in RRAM devices. In one embodiment, memory cell area may be increased by varying word line height and/or word line interface surface characteristics to ensure the creation of a grain boundary that is suitable for formation of conductive pathways through an active layer of an RRAM memory cell. This may maintain continuum behavior while reducing random cell-to-cell variability that is often encountered at nanoscopic scales. In another embodiment, such vertical memory cell structures may be formed in multiple-tiers to define a three-dimensional RRAM memory array. Further embodiments also provide a spacer pitch-doubled RRAM memory array that integrates vertical memory cell structures.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: June 25, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Gurtej Sandhu
  • Patent number: 10326007
    Abstract: Methods of forming a graded SiGe percentage PFET channel in a FinFET or FDSOI device by post gate thermal condensation and oxidation of a high Ge percentage channel layer and the resulting devices are provided. Embodiments include forming a gate dielectric layer over a plurality of Si fins; forming a gate over each fin; forming a HM and spacer layer over and on sidewalls of each gate; forming a cavity in each fin adjacent to the gate and spacer layer; epitaxially growing an un-doped high percentage SiGe layer in each cavity and along sidewalls of each fin; thermally condensing the high percentage SiGe layer, an un-doped low percentage SiGe formed underneath in the substrate and fins; and forming a S/D region over the high percentage SiGe layer in each u-shaped cavity, an upper surface of the S/D regions below the gate dielectric layer.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 18, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: George Robert Mulfinger, Ryan Sporer, Timothy J. McArdle, Judson Robert Holt
  • Patent number: 10325939
    Abstract: A method is provided for manufacturing a thin film transistor array substrate, which includes: a substrate on which a thin film transistor and a storage capacitor are formed on the substrate. The storage capacitor includes a first electrode plate formed on the substrate, a gate isolation layer or an etching stopper layer formed on the first electrode plate, and a second electrode plate formed on the gate isolation layer or the etching stopper layer. The etching stopper layer may be formed on the gate isolation layer, of which one is partially etched and removed such that there is only one of the gate isolation layer and the etching stopper layer existing between the two electrode plates of the storage capacitor so as to reduce the overall thickness of the isolation layer of the storage capacitor. Thus, the capacitor occupies a smaller area and a higher aperture ratio may be achieved.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 18, 2019
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Xiaowen Lv
  • Patent number: 10326019
    Abstract: A structure capable of effectively preventing dopant diffusion from source/drain regions into an underlying semiconductor-on-insulator (SOI) layer of fully-depleted SOI transistors with U-shaped channels is provided. By inserting a dopant diffusion barrier layer between an SOI layer of an SOI substrate and a doped extension layer from which source/drain extension regions are derived, the undesired dopant diffusion from the source/drain extension regions into the underlying SOI layer can be prevented.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Robert H. Dennard, Bruce B. Doris, Terence B. Hook
  • Patent number: 10315915
    Abstract: Disclosed are systems, methods, and computer program products for electronic systems with through-substrate interconnects and mems device. An interconnect formed in a substrate having a first surface and a second surface, the interconnect includes: a bulk region; a via extending from the first surface to the second surface; an insulating structure extending through the first surface into the substrate and defining a closed loop around the via, wherein the insulating structure comprises a seam portion separated by at least one solid portion; and an insulating region extending from the insulating structure toward the second surface, the insulating region separating the via from the bulk region, wherein the insulating structure and insulating region collectively provide electrical isolation between the via and the bulk region.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: June 11, 2019
    Assignee: Kionix, Inc.
    Inventors: Scott G. Adams, Charles W. Blackmer
  • Patent number: 10304842
    Abstract: The semiconductor device according to the present invention includes a ferroelectric film and an electrode stacked on the ferroelectric film. The electrode has a multilayer structure of an electrode lower layer in contact with the ferroelectric film and an electrode upper layer stacked on the electrode lower layer. The electrode upper layer is made of a conductive material having an etching selection ratio with respect to the materials for the ferroelectric film and the electrode lower layer. The upper surface of the electrode upper layer is planarized.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: May 28, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Yuichi Nakao
  • Patent number: 10297654
    Abstract: A display device includes a plurality of pixels that is arrayed in a first direction and a second direction. Each pixel includes; a first sub-pixel, a second sub-pixel that is disposed to be adjacent to the first sub-pixel in the first direction, a third sub-pixel that is disposed to be adjacent to at least one of the first sub-pixel and the second sub-pixel in the second direction, and a light shielding portion that is disposed corresponding to the position on which the third sub-pixel is disposed, so as to limit a viewing angle of the third sub-pixel in the first direction.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: May 21, 2019
    Assignee: Sony Corporation
    Inventors: Yosuke Motoyama, Reo Asaki, Shingo Makimura
  • Patent number: 10297712
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: May 21, 2019
    Assignee: Apple Inc.
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 10283592
    Abstract: A method of fabricating a vertical fin field effect transistor with a strained channel, including, forming a strained vertical fin on a substrate, forming a plurality of gate structures on the strained vertical fin, forming an interlevel dielectric on the strained vertical fin, forming a source/drain contact on the vertical fin adjacent to each of the plurality of gate structures, and selectively removing one or more of the source/drain contacts to form a trench adjacent to a gate structure.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: May 7, 2019
    Assignee: International Business Machines Corporation
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Patent number: 10283423
    Abstract: Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 7, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tenko Yamashita, Chun-Chen Yeh, Hui Zang
  • Patent number: 10276428
    Abstract: A method of fabricating a semiconductor package includes providing a substrate having at least one contact and forming a redistribution layer on the substrate. The formation of the redistribution layer includes forming a dielectric material layer over the substrate and performing a double exposure process to the dielectric material layer. A development process is then performed and a dual damascene opening is formed in the dielectric material layer. A seed metallic layer is formed over the dual damascene opening and over the dielectric material layer. A metal layer is formed over the seed metallic layer. A redistribution pattern is formed in the first dual damascene opening and is electrically connected with the at least one contact.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zi-Jheng Liu, Chen-Cheng Kuo, Hung-Jui Kuo
  • Patent number: 10276541
    Abstract: An embodiment is method including forming a first die package over a carrier substrate, the first die package comprising a first die, forming a first redistribution layer over and coupled to the first die, the first redistribution layer including one or more metal layers disposed in one or more dielectric layers, adhering a second die over the redistribution layer, laminating a first dielectric material over the second die and the first redistribution layer, forming first vias through the first dielectric material to the second die and forming second vias through the first dielectric material to the first redistribution layer, and forming a second redistribution layer over the first dielectric material and over and coupled to the first vias and the second vias.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Chung-Shi Liu, Chih-Wei Lin, Hui-Min Huang, Hsuan-Ting Kuo, Ming-Da Cheng
  • Patent number: 10276567
    Abstract: Semiconductor devices are provided. The semiconductor device includes an active fin which extends along a first direction and has a protruding shape, a gate structure which is disposed on the active fin to extend along a second direction intersecting the first direction, and a spacer which is disposed on at least one side of the gate structure, wherein the gate structure includes a first area and a second area which is adjacent to the first area in the second direction, wherein a first width of the first area in the first direction is different from a second width of the second area in the first direction, and the spacer extends continuously along both the first area and the second area.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 30, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Youn Kim, Hyun-Jo Kim, Hwa-Sung Rhee
  • Patent number: 10265646
    Abstract: The present teachings provide methods for sorting nanotubes according to their wall number, and optionally further in terms of their diameter, electronic type, and/or chirality. Also provided are highly enriched nanotube populations provided thereby and articles of manufacture including such populations.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: April 23, 2019
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Alexander A. Green, Mark C. Hersam
  • Patent number: 10269863
    Abstract: Methods for forming via last through-vias. A method includes providing an active device wafer having a front side including conductive interconnect material disposed in dielectric layers and having an opposing back side; providing a carrier wafer having through vias filled with an oxide extending from a first surface of the carrier wafer to a second surface of the carrier wafer; bonding the front side of the active device wafer to the second surface of the carrier wafer; etching the oxide in the through vias in the carrier wafer to form through oxide vias; and depositing conductor material into the through oxide vias to form conductors that extend to the active carrier wafer and make electrical contact to the conductive interconnect material. An apparatus includes a carrier wafer with through oxide vias extending through the carrier wafer to an active device wafer bonded to the carrier wafer.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Pao-Tung Chen, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 10263149
    Abstract: The present invention relates to nanostructured light emitting diodes, LEDs. The nanostructure LED device according to the invention comprises an array of a plurality of individual nanostructured LEDs. Each of the nanostructured LEDs has an active region wherein light is produced. The nanostructured device further comprise a plurality of reflectors, each associated to one individual nanostructured LED (or a group of nanostructured LEDs. The individual reflectors has a concave surface facing the active region of the respective individual nanostructured LED or active regions of group of nanostructured LEDs.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: April 16, 2019
    Assignee: QUNANO AB
    Inventors: Lars Ivar Samuelson, Bo Pedersen, Bjorn Jonas Ohlsson, Yourii Martynov, Steven L. Konsek, Peter Jesper Hanberg
  • Patent number: 10263117
    Abstract: A semiconductor device having favorable electric characteristics is provided. An oxide semiconductor layer includes first and second regions apart from each other, a third region which is between the first and second regions and overlaps with a gate electrode layer with a gate insulating film provided therebetween, a fourth region between the first and third regions, and a fifth region between the second and third regions. A source electrode layer includes first and second conductive layers. A drain electrode layer includes third and fourth conductive layers. The first conductive layer is formed only over the first region. The second conductive layer is in contact with an insulating layer, the first conductive layer, and the first region. The third conductive layer is formed only over the second region. The fourth conductive layer is in contact with the insulating layer, the third conductive layer, and the second region.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 16, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daigo Ito, Kazuya Hanaoka
  • Patent number: 10256146
    Abstract: A semiconductor device and method of forming the same, the semiconductor device includes a first and second fin shaped structures, a first and second gate structures and a first and second plugs. The first and second fin shaped structures are disposed on a first region and a second region of a substrate and the first and second gate structure are disposed across the first and second fin shaped structures, respectively. A dielectric layer is disposed on the substrate, covering the first and second gate structure. The first and second plugs are disposed in the dielectric layer, wherein the first plug is electrically connected first source/drain regions adjacent to the first gate structure and contacts sidewalls of the first gate structure, and the second plug is electrically connected to second source/drain regions adjacent to the second gate structure and not contacting sidewalls of the second gate structure.
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: April 9, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Hsiang Hung, Ssu-I Fu, Chao-Hung Lin, Chih-Kai Hsu, Jyh-Shyang Jenq