Patents Examined by Patricia L. Hailey
  • Patent number: 12036543
    Abstract: The present disclosure provides a preparation method of a doped ZnO catalyst. The preparation method includes the following steps: mixing a precipitant and a first solvent to form a first solution having 1 mol/L to 5 mol/L of the precipitant by concentration; mixing one of a Cu salt or a Ga salt, a Zn salt, and a second solvent to form a second solution having Cu and Zn at a molar ratio of less than 0.05:1 and Ga and Zn at a molar ratio of less than 0.1:1; subjecting the first solution and the second solution to precipitation or hydrolysis at 50° C. to 90° C. to obtain a precipitate, and washing and drying the precipitate to obtain a precursor sample; and conducting calcination on the precursor sample at 300° C. to 500° C. for 3 h to 5 h to obtain a Cu-doped ZnO catalyst or a Ga-doped ZnO catalyst.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: July 16, 2024
    Assignee: Taiyuan University of Technology
    Inventors: Wei Huang, Fang Li, Qian Zhang, Penglong Jia, Yongjun Liu
  • Patent number: 12040516
    Abstract: Provided is a gas diffusion layer, in which a microporous layer has an inner wall of through passages and a region adjacent to the through passages containing a greater amount of a water-repellent binder resin than a region not adjacent to the through passages, and thus water formed by an electrochemical reaction is effectively discharged from the gas diffusion layer. When the gas diffusion layer of the present invention is used, an optimal water management may be possible for smooth operation under all humidity conditions including a high humidity condition and a low humidity condition, and thus a fuel cell having improved cell performance may be obtained.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: July 16, 2024
    Assignee: JNTG CO., LTD.
    Inventors: Eun Sook Lee, Jy Young Jyoung, Na Hee Kang, Do Hun Kim, Jong Sik Ryu
  • Patent number: 12030035
    Abstract: Aspects described herein generally relate to bimetallic structures, syntheses thereof, and uses thereof. In an embodiment, a process for forming a bimetallic nanoframe is provided. The process includes forming a first bimetallic structure by reacting a first precursor comprising platinum (Pt) and a second precursor comprising a Group 8-11 metal (M2), wherein M2 is free of Pt; reacting a third precursor comprising Pt with the first bimetallic structure to form a second bimetallic structure, the second bimetallic structure having a higher molar ratio of Pt to Group 8-11 metal than the first bimetallic structure; and introducing the second bimetallic structure with an acid to form the bimetallic nanoframe, the bimetallic nanoframe having a higher molar ratio of Pt to Group 8-11 metal than that of the second bimetallic structure, the bimetallic nanoframe having the formula: (Pt)a(M2)b, wherein: a is the amount of Pt; b is the amount of M2.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: July 9, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Shutang Chen, Gugang Chen
  • Patent number: 12023647
    Abstract: Provided is a method for reusing an adsorbent which can stably exhibit purification ability by regenerating a used absorbent, in order to keep the composition of a purified syngas constant. The present invention concerns a method for regenerating a zeolite adsorbent which adsorbs a carbon dioxide gas from a syngas comprising the carbon dioxide gas and reduces the concentration of the carbon dioxide gas in the syngas, comprising: a step of recovering a used zeolite adsorbent; a step of calcining the used zeolite adsorbent at a temperature of 300° C. to 600° C. in an oxygen atmosphere to produce a regenerated zeolite adsorbent; and a step of reusing the regenerated zeolite adsorbent.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 2, 2024
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Kazuto Natsuyama, Kokoro Hamachi
  • Patent number: 12024478
    Abstract: A new chromium-containing fluorination catalyst is described. The catalyst comprises an amount of zinc that promotes activity and from 0.1 to 8.0% by weight of the chromium in the catalyst based on the total weight of the chromium is present as chromium (VI). The use of the zinc-promoted, chromium-containing catalyst in a fluorination process in which a hydrocarbon or halogenated hydrocarbon is reacted with hydrogen fluoride in the vapour-phase at elevated temperatures is also described.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: July 2, 2024
    Assignee: MEXICHEM AMANCO HOLDING S.A. DE C.V.
    Inventor: Andrew P. Sharratt
  • Patent number: 12017970
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: September 1, 2023
    Date of Patent: June 25, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 12011708
    Abstract: An organic frame material having a cobalt-containing isopoly-molybdic acid metal, a method of manufacturing the same, and applications thereof are provided. The organic frame material having a cobalt-containing isopoly-molybdic acid metal includes a three-dimensional network structure comprising cobalt ions coordinated with 2,3,5,6-tetrafluoro-bis (1,2,4-triazole-1-methyl) benzene ligands and trinuclear molybdate anions. The organic frame material having a cobalt-containing isopoly-molybdic acid metal has higher catalytic activity towards the bulk ring-opening of p-dioxanone. The resulting poly(p-dioxanone) has a weight average molecular weight exceeding 70,000 and is capable of being applied in the field of high polymer materials.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: June 18, 2024
    Assignee: Changzhou University
    Inventors: Mingyang He, Shengchun Chen, Qun Chen, Junfeng Qian, Meijun Wei, Chengpeng Zhang
  • Patent number: 12005428
    Abstract: An isopoly-vanadic acid coordination polymer catalyst, method of manufacturing the same, and application thereof are provided. The isopoly-vanadic acid coordination polymer catalyst has a chemical formula of [Co(atrz)(V2O6)]. The atrz is a 4-amino-1,2,4-triazole ligand, and [V2O6] is a binuclear vanadate anion. The isopoly-vanadic acid coordination polymer catalyst shows strong thermal stability, and it is easy to synthesize with high reproducibility. The isopoly-vanadic acid coordination polymer catalyst has a good catalytic activity towards the bulk ring-opening of p-dioxanone. The resulting poly(p-dioxanone) is stable and uniform. The high molecular weight of the resulting poly(p-dioxanone) has great potential in high polymer materials, in particular the field of medical high polymer materials.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: June 11, 2024
    Assignee: Changzhou University
    Inventors: Qun Chen, Zhenxiang Xia, Shengchun Chen, Mingyang He, Junfeng Qian, Meijun Wei
  • Patent number: 11998896
    Abstract: A cluster-supporting catalyst including porous carrier particles having acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles. In the cluster-supporting catalyst including porous carrier particles having acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, the catalyst metal may be rhodium, the catalyst metal may be palladium, the catalyst metal may be platinum, or the catalyst metal may be copper.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: June 4, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro Takeda, Namiki Toyama, Kazuhiro Egashira, Toshiaki Tanaka, Seitoku Ito
  • Patent number: 11994345
    Abstract: The present invention describes an improved process for the commercial scale production of high-quality catalyst materials. These improved processes allow for production of catalysts that have very consistent batch to batch property and performance variations. In addition these improved processes allow for minimal production losses (by dramatically reducing the production of fines or small materials as part of the production process). The improved process involves multiple steps and uses calcining ovens that allow for precisely control temperature increases where the catalyst is homogenously heated. The calcining gas is released into a separate heating chamber, which contains the recirculation fan and the heat source.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: May 28, 2024
    Assignee: Greyrock Technology, LLC
    Inventors: Robert Schuetzle, Dennis Schuetzle
  • Patent number: 11986813
    Abstract: A catalyst having at least one Group VIB metal component, at least one Group VIII metal component, a phosphorus component, and a boron-containing carrier component. The amount of the phosphorus component is at least 1 wt %, expressed as an oxide (P2O5) and based on the total weight of the catalyst, and the amount of boron content is in the range of about 1 to about 13 wt %, expressed as an oxide (B2O3) and based on the total weight of the catalyst. In one embodiment of the invention, the boron-containing carrier component is a product of a co-extrusion of at least a carrier and a boron source. A method for producing the catalyst and its use for hydrotreating a hydrocarbon feed are also described.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: May 21, 2024
    Assignee: Ketjen Netherlands B.V.
    Inventors: Marcel Adriaan Jansen, Henk Jan Tromp, Bob Gerardus Oogjen, Sander Hendrikus Lambertus Thoonen, Jan Nieman, Wilhelmus Clemens Jozef Veerman
  • Patent number: 11986801
    Abstract: A method of synthesizing an Au—(TiO2-y/WO3-x) semiconductor composite, the method comprising: loading tungsten oxide (WO3) powder in a fluidized bed reactor followed by H2 treatment to produce reduced tungsten oxide (WO3) nanoparticles or WO3-x nanoparticles; producing reduced titanium dioxide (TiO2) nanoparticles or TiO2-y (containing defect states) nanoparticles in-situ; coupling the TiO2-y nanoparticles with the WO3-x nanoparticles to provide a titanium dioxide/tungsten oxide nanocomposite (TiO2-y/WO3-x); and simultaneous substitutional doping of TiO2-y and WO3-x in the titanium dioxide/tungsten oxide nanocomposite (TiO2-y/WO3-x) with gold ions (Au) to obtain the Au—(TiO2-y/WO3-x) semiconductor composite; wherein x has a value between 0.33 and 0.37. The thus produced composite can be used as a photocatalyst.
    Type: Grant
    Filed: February 12, 2024
    Date of Patent: May 21, 2024
    Assignee: KING FAISAL UNIVERSITY
    Inventor: Hayat Khan
  • Patent number: 11984627
    Abstract: Provided is a chromium adsorption material including: a porous body made of a metal material; and a chromium adsorbent carried inside pores of the porous body, wherein the metal material includes a first metal and a second metal, the first metal includes nickel, and the second metal includes at least one selected from the group consisting of tin, aluminum, cobalt, titanium, manganese, tungsten, copper, silver, and gold.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: May 14, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Mitsuyasu Ogawa, Takahiro Higashino, Masatoshi Majima, Koma Numata
  • Patent number: 11978912
    Abstract: Atomically dispersed platinum-group metal-free catalyst and method for synthesizing the same. According to one embodiment, the catalyst is made by a method in which, in a first step, a metal oxide/zeolitic imidazolate frameworks (ZIF) composite is formed by combining (i) nanoparticles of an oxide of at least one of iron, cobalt, nickel, manganese, and copper, (ii) a hydrated zinc salt, and (iii) an imidazole. Then, in a second step, the metal oxide/ZIF composite is thermally activated, i.e., carbonized, to form an M-N—C catalyst. Thereafter, the M-N—C catalyst may be mixed with a quantity of ammonium chloride, and then the M-N—C/NH4Cl mixture may be pyrolyzed. The foregoing NH4Cl treatment may improve the intrinsic activity of the catalyst. Then, a thin layer of nitrogen-doped carbon may be added to NH4Cl-treated M-N—C catalyst by chemical vapor deposition (CVD). Such CVD treatment may improve the stability of the catalyst.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: May 7, 2024
    Assignees: The Research Foundation for the State University of New York, Giner, Inc.
    Inventors: Gang Wu, Hui Xu, Shengwen Liu, Shuo Ding
  • Patent number: 11969713
    Abstract: Functionalized catalysts for use in a hydrogen evolution reaction (HER) contain nanoparticles containing a transition metal enveloped in layers of graphene, which renders the nanoparticles resistant to passivation while maintaining an optimal ratio of transition metal and transition metal oxide in the nanoparticles. The catalysts can be utilized with anionic exchange polymer membranes for hydrogen production by alkaline water electrolysis.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 30, 2024
    Assignee: Northeastern University
    Inventors: Sanjeev Mukerjee, Robert Allen, Huong Thi Thanh Doan, Ian Kendrick
  • Patent number: 11969716
    Abstract: This application discloses a silicon carbide (SiC)-loaded graphene photocatalyst for hydrogen production under visible light irradiation and a preparation method thereof. Pure SiC and pure black carbon are respectively prepared and mixed to obtain a mixture with a resistance less than 100?. Then the mixture was vacuumized and processed with a current pulse with an increasing voltage until a breakdown occurs, and subjected to ultrasonic stirring, centrifugal washing and vacuum drying in turn to obtain the SiC-loaded graphene photocatalyst. By means of the current pulse, a heterojunction is formed between SiC and graphene to improve the catalytic activity of the photocatalyst; and the photocatalytic hydrogen production rate of SiC nanoparticles can be enhanced after loaded on the graphene.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: April 30, 2024
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Shengbao Lai, Biao Li, Zuohui Liu, Guanhai Wen, Maoxiang Hou, Xin Chen
  • Patent number: 11969711
    Abstract: The present invention relates to a carbon-based precious metal-transition metal composite catalyst and a preparation method therefor, and more particularly, to a catalyst synthesis method in which, when preparing a high-content precious metal-transition metal composite catalyst, a catalyst having uniform particles and composition can be prepared, and cyclohexane dimethanol (CHDM) is efficiently produced by the hydrogenation reaction of cyclohexane dicarboxylic acid (CHDA) in an aqueous solution.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: April 30, 2024
    Assignee: HANWHA SOLUTIONS CORPORATION
    Inventors: Jeong Kwon Kim, Sun Woo Yook, Bong Sik Jeon, Wan Jae Myeong
  • Patent number: 11964937
    Abstract: A (methyl)acrolein oxidation catalyst and a preparation method therefor-in which the catalyst has a composition represented by the following formula: x(Mo12PaCsbVcDeOf)+tC/yZ in which Mo12PaCSbVcDeOf is a heteropolyacid salt main catalyst; C is a nano carbon fiber additive, and Z is a carrier thermal conduction diluent; Mo, P, Cs, V, and O represent the elements of molybdenum, phosphorus, cesium, vanadium, and oxygen, respectively; D represents at least one element selected from the group consisting of copper, iron, magnesium, manganese, antimony, zinc, tungsten, silicon, nickel, and palladium; a, b, c, e, and f represent the atomic ratio of each element, a=0.1-3, b=0.01-3, c=0.01-5, e=0.01-2, and f being the atomic ratio of oxygen required to satisfy the valence of each of the described components; x and y represent the weights of the main catalyst and the carrier thermal conduction diluent Z, and y/x=11.1-50%; and t represents the weight of the nano carbon fiber, and t/x=3-10%.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 23, 2024
    Assignee: Shanghai Huayi New Material Co., Ltd.
    Inventors: Xin Wen, Ge Luo, Xinlei Jin, Tonghao Wu, Yan Zhuang, Zhigang Qian, Xiaodong Chu
  • Patent number: 11962018
    Abstract: An electrochemical oxygen reduction catalyst comprising platinum-containing nanoparticles and at least one member selected from the group consisting of a melamine compound, a thiocyanuric acid compound, and a polymer containing the melamine compound or the thiocyanuric acid compound as a monomer is an electrochemical oxygen reduction catalyst having a high oxygen reduction activity (small overvoltage).
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: April 16, 2024
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Masafumi Asahi
  • Patent number: 11955647
    Abstract: Disclosed are a method for preparing a graphene dot-palladium hybrid having a nanosponge structure that includes reducing a palladium precursor in the presence of a carbon dot and sodium bromide, and a graphene dot-palladium hybrid catalyst prepared according to the method. The nanosponge structure of the graphene dot-palladium hybrid is encapsulated by a graphene dot. The carbon dot is doped with at least one heteroatom selected from the group consisting of nitrogen, sulfur, phosphorus, and boron.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: April 9, 2024
    Assignee: THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY (IAC)
    Inventors: Ho-Suk Choi, Van Toan Nguyen