Patents Examined by Pritesh Darji
  • Patent number: 8481453
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components such as vanadia that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8481454
    Abstract: A honeycomb structure includes aluminum titanate and cell walls. The cell walls extend along a longitudinal direction of the honeycomb structure to form a plurality of cells between the cell walls. A porosity of the honeycomb structure is from about 40% to about 60%. In a binary image of substrate portions and pore portions of each of the cell walls, an area ratio (%) of the pore portions to a whole area in a rectangularly-divided image is in a range from (the porosity?about 25%) to (the porosity+about 25%). The binary image is converted from a microscopic image of a cross section of each of the cell walls in parallel with the longitudinal direction. The rectangularly-divided image is formed by dividing the binary image in a direction parallel to a thickness direction of each of the cell walls at a predetermined width.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: July 9, 2013
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Kazunori Yamayose
  • Patent number: 8481452
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example, wherein the capture material maintains a low total fractional monolayer coverage of minority phase oxides for the duration of the extreme exposure.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 9, 2013
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8455556
    Abstract: A process for the preparation of a packed bed comprising an iron enriched cobalt catalyst for use in a Fischer-Tropsch reaction, the process comprising the steps of: (a) providing a packed bed with one or more catalyst particles comprising metallic cobalt; (b) contacting a part of the catalyst particle(s) in the packed bed with an iron containing compound. The process is preferably conducted in situ which conveniently results in an iron containing cobalt catalyst with a higher C5+ selectivity. In certain preferred embodiments the concentration of iron increases towards the surface of the resulting catalyst particles whereas the cobalt concentration is constant which further increases the selectivity of the catalyst to producing C5+ hydrocarbons.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 4, 2013
    Assignee: Shell Oil Company
    Inventors: Ralph Haswell, Carolus Matthias Anna Maria Mesters, Heiko Oosterbeek, Thomas Joris Remans, Marinus Johannes Reynhout
  • Patent number: 8425649
    Abstract: A dry flowable additive for aqueous urea-based fertilizers made of solid urea formaldehyde polymer (UFP), N-(n-butyl) thiophosphoric triamide (NBPT), and, optionally, dicyandiamide (DCD), wherein the liquid fertilizer containing the additive provides reduced nitrogen loss from the soil. Optionally, the dry additive may also be blended with molten or solid urea to form a solid urea-based fertilizer with reduced nitrogen loss from the soil.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 23, 2013
    Assignee: Koch Agronomic Services, LLC
    Inventors: Allen R. Sutton, Willis Thornsberry
  • Patent number: 8419819
    Abstract: A solid urea fertilizer prepared by mixing a solid, flowable, urea formaldehyde polymer with a urea source, such as molten or solid urea to form a fertilizer that has favorable crush strength characteristics, low biuret content, and/or desirable storage and handling properties. The urea fertilizer may contain additionally, an aqueous urea formaldehyde solution or mixture. Optionally, the fertilizer may contain a urease inhibitor and/or a nitrification inhibitor.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: April 16, 2013
    Assignee: Koch Agronomic Services, LLC
    Inventor: Allen R. Sutton
  • Patent number: 8382991
    Abstract: Discolored organic compounds (DOC) may be extracted from a medium using a sorbent composition derived by sulfidation of red mud, which contains hydrated ferric oxides derived from the Bayer processing of bauxitic ores. In some aspects, the sorbent composition is slurried with the medium. In other aspects, the sorbent composition is formed into pellets or the like, which are contacted with the medium. The red mud (along with adsorbed contaminants) is then separated from the water using any suitable technique, such as filtration, sedimentation, or centrifugation.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 26, 2013
    Assignee: J. I. Enterprises, Inc.
    Inventor: Joseph Iannicelli
  • Patent number: 8383544
    Abstract: Nitrogen oxide storage catalysts are used to remove the nitrogen oxides present in the lean exhaust gas of lean-burn engines. As a result of the stress due to high temperatures in vehicle operation, they are subject to thermal aging processes which affect both the nitrogen oxide storage components and the noble metals present as catalytically active components. The present invention provides a process with which the catalytic activity of a nitrogen oxide storage catalyst which comprises, in addition to platinum as a catalytically active component, basic compounds of strontium and/or barium on a support material comprising cerium oxide, said catalytic activity being lost owing to the thermal aging process, can be at least partly restored. The two-stage process is based on the fact that strontium and/or barium compounds formed during the thermal aging with the support material, which also comprise platinum, are recycled to the catalytically active forms by controlled treatment with specific gas mixtures.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 26, 2013
    Assignee: Umicore AG & Co., KG
    Inventors: Stephan Eckhoff, Meike Wittrock, Ulrich Goebel, Ina Grisstede, Ruediger Hoyer, Wilfried Mueller, Thomas Kreuzer, Maria Cristina Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Aflons Baiker
  • Patent number: 8377370
    Abstract: Disclosed are high-porosity cordierite honeycomb substrates having fine pore size, narrow pore size distribution, little or no microcracking, and a high thermal shock resistance. The porous ceramic honeycomb substrates generally include a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Corning Incorporated
    Inventor: Gregory Albert Merkel
  • Patent number: 8377310
    Abstract: Toxic substances such as heavy metals are extracted from a medium using a sorbent composition. The sorbent composition is derived by sulfidation of red mud, which contains hydrated ferric oxides derived from the Bayer processing of bauxite ores. Exemplary sulfidizing compounds are H2S, Na2S, K2S, (NH4)2S, and CaSx. The sulfur content typically is from about 0.2 to about 10% above the residual sulfur in the red mud. Sulfidized red mud is an improved sorbent compared to red mud for most of the heavy metals tested (Hg, Cr, Pb, Cu, Zn, Cd, Se, Th, and U). Unlike red mud, sulfidized red mud does not leach naturally contained metals. Sulfidized red mud also prevents leaching of metals when mixed with red mud. Mixtures of sulfidized red mud and red mud are more effective for sorbing other ions, such as As, Co, Mn, and Sr, than sulfidized red mud alone.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: February 19, 2013
    Assignee: J.I. Enterprises, Inc.
    Inventor: Joseph Iannicelli
  • Patent number: 8372375
    Abstract: For recovering hydrogen with a high recovery from a reformed gas and contributing to downsizing and cost reduction of facilities, a high-purity hydrogen E is obtained by reforming a reformable raw material A through a reforming unit 1 to yield a hydrogen-rich reformed gas B, compressing the hydrogen-rich reformed gas B with a compressor 2, allowing the compressed gas to pass through a PSA unit 3 to remove unnecessary gases other than carbon monoxide by adsorption, and allowing the resulting gas to pass through a carbon monoxide remover 4 packed with a carbon monoxide adsorbent supporting a copper halide to remove carbon monoxide by adsorption.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: February 12, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Noboru Nakao, Takeshi Yamashita, Akitoshi Fujisawa, Keita Yura
  • Patent number: 8372372
    Abstract: A clean bench comprising a worktable on which polycrystalline silicon is placed, a box part which includes side plates to surround three sides except a front face of a working space above the worktable, and a ceiling plate which covers an upper side of the working space. Supplying holes are formed in the ceiling plate of the box part, which supply clean air onto an upper surface of the worktable. An ionizer is provided, which ionizes the clean air supplied from the supplying holes to the working space and removes static electricity on the worktable. Suction holes are formed in the side plate of the box part, which suction air from the working space.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 12, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kazuhiro Sakai, Yukiyasu Miyata
  • Patent number: 8298983
    Abstract: A process for producing a composite metal oxide of an acidic metal oxide and a basic metal oxide, wherein the process comprises (a) providing an aqueous solution containing a colloidal particle of the acidic metal oxide and a salt of the basic metal, (b) adjusting the pH of the aqueous solution to a pH at which a part of the basic metal dissolves in the aqueous solution, the remaining of the basic metal precipitates as a hydroxide and has a positive zeta potential, and the colloidal particle of the acidic metal oxide is not dissolved and has a negative surface potential, and then maintaining this pH over a predetermined time to obtain a precursor of the composite metal oxide, and (c) drying and firing the precursor of the composite metal oxide obtained.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Patent number: 8257673
    Abstract: Disclosed is a process for removing organic sulfur from more than one reactive fuel gas stream. A reactor vessel that is provided with at least one bed of hydrodesulfurization catalyst is used to hydrodesulfurize multiple reactive fuel gas streams with a less reactive fuel gas stream being introduced into the reactor vessel at a point above the introduction point of a more reactive fuel gas stream. An hydrotreated fuel gas is yielded from the reactor vessel having a hydrogen sulfide concentration and a low organic sulfur content.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 4, 2012
    Assignee: Shell Oil Company
    Inventor: Gary Lee Ripperger
  • Patent number: 8252259
    Abstract: Nano-sized rare earth metal oxide particles are prepared from aqueous reverse micelles. The engineered nanoparticles have large surface area to volume ratios, and uniformly incorporate a surfactant in each particle, so that when applied to the inner surface of a pipeline or sprayed onto a fluid stream in a pipeline, the particles reduce the roughness of the inside surface of pipe being used to transport fluid. The application of a nanolayer of this novel nanoceria mixture causes a significant reduction in pressure drops, friction, and better recovery and yield of fluid flowing through a pipeline.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: August 28, 2012
    Assignees: University of Central Florida Research Foundation, Inc., CC Technologies Laboratories, Inc.
    Inventors: Sudipta Seal, William P. Jepson, Sameer Deshpande, Suresh C. Kuiry, Swanand D. Patil
  • Patent number: 8193113
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 8187567
    Abstract: Disclosed is a niobium suboxide powder for the manufacture of capacitors with higher break down voltages, higher temperatures of operation and elongated lifetimes. The powder is doped with nitrogen which is at least partly present in the form homogeneously distributed, x-ray detectable Nb2N-crystal domains. The niobium suboxide powder contains niobium suboxide particles having a bulk nitrogen content of between 500 to 20,000 ppm.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: May 29, 2012
    Assignee: H. C. Starck GmbH
    Inventors: Christoph Schnitter, Holger Brumm, Christine Rawohl, Colin McCracken
  • Patent number: 8178068
    Abstract: A catalyst charge for ammonia oxidation, including the Andrussow process, comprises a first stage ammonia oxidation catalyst capable of oxidizing 20 to 99% of designed ammonia throughput, to produce a first stage product gas comprising unreacted ammonia, oxygen and nitrogen oxides, and a second stage ammonia oxidation catalyst capable of completing the oxidation of unreacted ammonia. Low levels of nitrous oxide are produced an extended campaign lengths may be seen.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: May 15, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Sean Alexander Axon, Duncan Roy Coupland, Brian Thomas Horner, John Ridland, Ian Carmichael Wishart
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Patent number: 8137647
    Abstract: Provided are processes for the production of titanium dioxide from ilmenite. In these processes, ilmenite is digested with aqueous ammonium hydrogen oxalate. Iron from the ilmenite precipitates as a hydrated iron oxalate and is removed by filtering, leaving a titanium-rich solution. The titanium-rich solution can be further processed to form titanium dioxide.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 20, 2012
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David Richard Corbin, Thomas Paul Griffin, Keith W. Hutchenson, Sheng Li, Mark Brandon Shiflett, Carmine Torardi, Joseph J. Zaher