Patents Examined by Queenie Dehghan
  • Patent number: 8733130
    Abstract: A process for coating a ribbon of float glass is disclosed. It comprises the steps of forming a glass ribbon, depositing a first transparent conductive coating upon a major surface of the ribbon which does not extend to the edges of the ribbon while the ribbon is at an elevated temperature, cooling said coated ribbon under controlled conditions in an annealing lehr and cutting off the edges of the ribbon so as to produce a ribbon having a uniform coating extending across the full width of the cut ribbon which is characterized in that a second conductive coating is deposited upon the uncoated edges of the ribbon while that edge is at a temperature which is above the ambient temperature. The invention finds particular application in the production of coated glass products where the thickness of the glass ribbon is at least 8 mm and most particularly where the thickness of the glass is at least 10 mm.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 27, 2014
    Assignee: Pilkington Group Limited
    Inventors: Kevin Sanderson, Gerhard Lingl, Hans-Eckhard Leitl, Franz Michael Josef Scharnagl, Douglas M Nelson
  • Patent number: 8726696
    Abstract: A stirring device 100 comprises a chamber 101, and a stirrer 102 for stirring molten glass 7 in the chamber 101. The stirrer 102 has a shaft 105 as a rotation axis, and blades 106a-106e disposed in a plurality of tiers on a side wall of the shaft 105. The blades 106a-106e have support plates 108 and ancillary plates 109. The ancillary plates 109 create, in the molten glass 7, a flow in the radial direction of the shaft 105.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 20, 2014
    Assignee: AvanStrate Inc.
    Inventors: Kohei Yamamoto, Hitoshi Gekko
  • Patent number: 8726693
    Abstract: There is provided an apparatus for supplying a hydrogen gas to a quartz glass manufacturing apparatus including a burner that generates an oxyhydrogen flame when supplied with the hydrogen gas, where the apparatus includes: a first hydrogen supply system that supplies a hydrogen gas in which isomers are in equilibrium; a second hydrogen supply system that supplies a hydrogen gas in which isomers are out of equilibrium; a flow rate control section that includes: a valve that changes a flow rate of the hydrogen gas to be supplied to the burner; a first flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a heat capacity; and a control section that controls the valve in such a manner that a measured value obtained by the first flow rate measuring section approaches a set value input from outside; a second flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a different factor than the
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: May 20, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Dai Inoue, Takaaki Nagao, Hiroyuki Koide
  • Patent number: 8731356
    Abstract: Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: May 20, 2014
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Nasser Peyghambarian, Axel Schulzgen, Valery Temyanko
  • Patent number: 8720230
    Abstract: The present invention relates to a method and an apparatus for fabricating a preform (1,10,100) that can be used for drawing an active optical fiber (8). The present invention further relates to an active optical fiber (8), designed for amplification or attenuation purposes, drawn from said preform (1,10,100) and to an optical amplifier (600, 601) using a laser active optical fiber.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 13, 2014
    Assignee: Silitec Fibers SA
    Inventors: Frédéric Sandoz, Carlos Pedrido, Philippe Ribaux, Philippe Hamel, Peter Othenin, Philippe Vincent Roy, Methiew Devautour
  • Patent number: 8720231
    Abstract: An apparatus for coloring optical fibers, includes: a first reservoir for containing a natural coating material to be applied onto an optical fiber being drawn; a second reservoir for containing a colorant to be mixed with the natural coating material; a mixer in fluid communication with the first and second reservoirs to receive a first flow of natural coating material and a second flow of colorant and to mix the first and second flows to obtain a colored coating material; a coating die in fluid communication with the mixer to receive the flow of colored coating material and to apply it onto the optical fiber being drawn.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: May 13, 2014
    Assignee: Prysmian S.p.A.
    Inventors: Silvio Frigerio, Lidia Terruzzi, Giovanni Villani, Corrado Castoldi
  • Patent number: 8720227
    Abstract: In a glass-ribbon conveyance assisting device which is applied to a glass-ribbon conveyance device configured to convey a glass ribbon on a plurality of rotating glass-conveyance rolls, the glass-ribbon conveyance assisting device includes a rotary drive section, a plurality of rolls configured to be rotated by the rotary drive section, an annular belt configured to rotate while running with flexion under a state where the rolls have been inserted into the belt, and a wheel configured to press the glass ribbon which is conveyed on the belt. The glass ribbon is conveyed on the belt by a drive of the belt under a state where width-directional both end portions of the glass ribbon are sandwiched between the belt and the wheel.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: May 13, 2014
    Assignee: Central Glass Company, Limited
    Inventors: Tomokazu Tsuji, Takanori Mifuji, Nobuhisa Tanise, Kinji Masui
  • Patent number: 8707741
    Abstract: A method of manufacturing an optical fiber preform by depositing glass fine particles onto a surface of a glass rod while the glass rod is reciprocated relative to a plasma torch, including: moving the glass rod in a first direction relative to the plasma torch while the plasma torch is applied to the glass rod and supplied at least with a dopant material and a glass material to deposit the glass fine particles onto the surface of the glass rod, in such a manner that a plasma power is set higher during a first time interval starting from a beginning of the movement of the glass rod in the first direction than during a second time interval starting from an end of the first time interval; and moving the glass rod in a second direction relative to the plasma torch, where the second direction is opposite to the first direction.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 29, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd
    Inventor: Tetsuya Otosaka
  • Patent number: 8701445
    Abstract: An optical fiber manufacturing apparatus for manufacturing an optical fiber by drawing a optical fiber preform, including: a drawing furnace having therein a muffle tube into which the optical fiber preform is inserted and heating the optical fiber preform; and a first seal member which is disposed at an insert side of the drawing furnace so as to be coaxial with the drawing furnace and which seals the optical fiber preform inserted into an opening formed at the center thereof, wherein the first seal member includes a plurality of inner-circumference slits formed in the inner circumference thereof and a plurality of outer-circumference slits formed in the outer circumference thereof.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 22, 2014
    Assignee: Fujikura Ltd.
    Inventor: Tomohiro Nunome
  • Patent number: 8689586
    Abstract: A glass-melting device for producing glass fibers capable effectively reducing inclusion of bubbles into glass fibers to be spun, and a method for producing glass fibers using the same are provided. A glass-melting device 100 for producing glass fibers comprises: a first glass-melting tank 12; a conduit 14 extending downward from the first glass-melting tank 12; a sucking device 18 for exposing the first glass-melting tank 12 to a reduced-pressure atmosphere; a second glass-melting tank 20 provided on a lower portion of the conduit 14 and exposed to an atmospheric-pressure atmosphere; and a bushing 22 provided at a bottom portion of the second glass-melting tank 20 and equipped with a number of nozzles 22a.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 8, 2014
    Assignee: Nitto Boseki Co., Ltd.
    Inventors: Norio Hirayama, Naohiro Miyanaga, Masahiko Takahashi, Kentarou Ogawa
  • Patent number: 8689588
    Abstract: An object of the present invention is to effectively reduce mixing of bubbles into a spun glass fiber. A glass-melting device 10 for producing glass fibers includes; a first glass-melting tank 12 exposed to a reduced-pressure atmosphere; a second glass-melting tank 14 and a third glass-melting tank 16 arranged below the first glass-melting tank 12; an ascending conduit 18 that sends up molten glass resulting from melting in the second glass-melting tank 14 to deliver the molten glass to the first glass-melting tank 12; a descending conduit 20 that sends the molten glass down from the first glass-melting tank 12 to deliver the molten glass to the third glass-melting tank 16; a decompression housing 22; and a bushing 24. The glass-melting device 10 further includes heating means for separately heating the first glass-melting tank 12, the second glass-melting tank 14, the third glass-melting tank 16, the ascending conduit 18, the descending conduit 20 and the bushing 24.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 8, 2014
    Assignee: Nitto Boseki Co., Ltd.
    Inventors: Norio Hirayama, Masahiko Takahashi, Naohiro Miyanaga, Kentarou Ogawa
  • Patent number: 8689587
    Abstract: Methods to fabricate an optical preform for draw into Polarization Maintaining (PM) or Polarizing (PZ) optical fiber are provided. The methods involve assembly of pre-shaped and pieced together bulk glass elements into preforms (“assembled preforms”) for simultaneous fusing and drawing into optical fiber. These preforms form a stress-induced birefringent optical core when drawn to fiber.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 8, 2014
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Edward M. Dowd, Paul E. Sanders
  • Patent number: 8661857
    Abstract: Provided is a method of manufacturing an optical fiber preform, comprising obtaining a base material ingot by sintering a porous glass base material at a high temperature to change the porous glass base material into glass while retaining an unsintered portion at one end thereof that is not completely changed to glass; and while relatively moving a heating means in a longitudinal direction of the base material ingot, applying a tensile force to a heated portion and beginning to extend the unsintered portion from one side to decrease a diameter of and extend the base material ingot.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 4, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Yoshiaki Shimizu
  • Patent number: 8661850
    Abstract: A method keeps the width of the manufactured sheet substantially the same by attaching edge directors for the formed sheet to the manufacturing apparatus structure instead of to the forming block. Thus, sheet glass may be manufactured to specification for a longer time with the same forming block. An additional method adjusts the width of the manufactured sheet by changing the distance between the edge directors. Thus sheet glass may be manufactured to different width specifications with the same forming block.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8656743
    Abstract: A porous preform production apparatus having a reaction vessel which includes an upper deposition chamber having an air supply inlet and an exhaust outlet, a lower deposition chamber having an air supply inlet, and a top chamber disposed on top of the upper deposition chamber and adapted to lift and store a porous preform formed by deposition, characterized in that the floor of the upper deposition chamber is disposed at a height between the lower end of a straight body part and the deposition tip of the porous glass preform during deposition, and a connection opening which connects the upper deposition chamber with the lower deposition chamber, is provided on the floor of the upper deposition chamber, and that when the aperture diameter of the connection opening is designated as A and the diameter of the porous preform passing through the connection opening as B, the ratio B/A satisfies the expression 0.05?B/A?0.6.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: February 25, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Makoto Yoshida
  • Patent number: 8650907
    Abstract: The method produces a reshaped glass-ceramic article by forced reshaping of a flat green glass part during a ceramicizing process with temporarily lowered viscosity due to crystallization heat. To perform the forced reshaping economically the forced reshaping takes place in a continuous oven for ceramicizing and in an oven section in which the viscosity of the green glass part is temporarily lowered as a result of crystallization heat. An apparatus for performing the process is provided in the continuous oven including different active reshaping devices and/or a hollow mold. The method produces glass-ceramic articles with undamaged surfaces corresponding to surfaces produced during the making of the green glass part (smooth or structured, e.g. knobbed).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Schott AG
    Inventors: Martin Taplan, Herwig Scheidler, Ioannis Kosmas, Friedrich-Georg Schroeder, Wolfgang Schmidbauer, Torsten Gabelmann, Dieter Schoenig
  • Patent number: 8650912
    Abstract: A method for manufacturing quartz glass using a main burner having a multi-tube assembly having a center tube, a first enclosure tube surrounding the center tube, a second enclosure tube surrounding the first enclosure tube, a tubular shell surrounding the multi-tube assembly, and a plurality of nozzles disposed within the tubular shell, a double-tube assembly surrounding at least a forward opening of the main burner includes feeding silica-forming compound to the center tube, a combustion-supporting gas to the first enclosure tube and the nozzles, a combustible gas to the second enclosure tube and the tubular shell, and a combustion-supporting gas to the double-tube assembly, forming oxyhydrogen flame for hydrolyzing or decomposing the silica-forming compound to form silica, depositing the silica on the target, and melting and vitrifying the deposited silica into quartz glass.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 18, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hisatoshi Otsuka, Kazuo Shirota
  • Patent number: 8650913
    Abstract: A method of forming a needled rotary fiberglass glass insulation product is provided. The formation of the needled insulation product may be conducted in a continuous in-line process in which the fibers are rotary formed, a binder is sprayed onto the hot fibers, the fibers are collected onto a conveyor and formed into a fiberglass pack, the fiberglass pack is passed through the oven, and the cured insulation blanket is passed through a needling apparatus. The reduction in thickness and increased density caused by the needling process permits the production of lower thickness and higher density insulation products. In particular, the needled insulation product may have a thickness of less than about 0.75 inches and a density from about 1 pcf to about 10 pcf. The needled insulation product may be utilized in household appliances, water heaters, and HVAC equipment.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 18, 2014
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Jacob Chacko, Robert P. Collier, Edward A. Martine
  • Patent number: 8635889
    Abstract: A known refraction-sensitive optical fiber comprises a core zone with an index of refraction nK, a jacket zone surrounding the core zone, said jacket zone having an index of refraction nM, and an annular zone made of quartz glass doped with fluorine, said annular zone surrounding the jacket zone and having an index of refraction nF, where nF<nM<nK. With this as a starting point, an optical fiber is to be provided that is characterized by high refraction-sensitivity, good spliceability and compatibility, and a method is to be provided for cost-effective manufacture of such a fiber. With regard to the method, this object is accomplished according to the invention in that the quartz glass of the annular zone (21) is produced in a plasma deposition process on the outside in which an annular zonal layer made of the quartz glass doped with fluorine is produced on a substrate body (20), said layer having a layer thickness of at least 1 mm and an index of refraction nF<1.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 28, 2014
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Jan Vydra, Peter Bauer, Karsten Braeuer, Michael Huenermann
  • Patent number: 8627686
    Abstract: The automatic strand take-up installation comprises at least one gripping member (12) for taking hold of at least one strand coming from a bushing (2), the gripping member being guided by a single conveying loop (1) to the vicinity of a chopper (7). One system for maneuvering the gripping member allows the gripping member (12) to be opened and closed in such a way as to release said strand at the chopper (7).
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 14, 2014
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Philippe Boissonnat, Jean-Paul Boisset, Frederic Skura, Danyele Rey, Natacha Karbowski, Marie Karbowski, Sarah Karbowski, Lydia Karbowski