Patents Examined by Rahul Maini
  • Patent number: 10732219
    Abstract: An apparatus for testing semiconductor devices and a system including the same includes a socket unit having a plurality of sockets into which a plurality of semiconductor devices are inserted, respectively. Also included is a module unit including a first sub-module for receiving a test signal from a host and providing the same test signal to each of the plurality of sockets, and a second sub-module including the same structure as the first sub-module. The first sub-module includes a first buffer unit including an amplifier having an input terminal to which an input signal is inputted and an output terminal to amplify and output the input signal inputted based on a reference voltage (VT), and a reference resistor having one end connected to the input terminal of the amplifier and the other end to which the reference voltage is applied, and a second buffer unit including the same structure as the first buffer unit.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: August 4, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ki Jae Song
  • Patent number: 10725127
    Abstract: In a magnetic field measurement apparatus, a light source irradiates a gas cell with linearly polarized light serving as pump light and probe light in a Z axis direction, and a magnetic field generator applies, to the gas cell, a magnetic field Ax which is a time function f(t) having the amplitude A0 taking n fixed values fi (where i=1, . . . , and n), and a magnetic field Ay which is a time function g(t) having the amplitude A0 taking m fixed values gj (where j=1, . . . , and m) in each of X axis and Y axis directions. A calculation controller calculates a magnetic field C (Cx, Cy, Cz) of a measurement region using the X axis and Y axis components Ax and Ay of an artificial magnetic field A, and a spin polarization degree Mx corresponding to a measurement value W? from a magnetic sensor.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 28, 2020
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Kimio Nagasaka, Mitsutoshi Miyasaka
  • Patent number: 10725168
    Abstract: A measurement system is provided. The measurement system comprises a device under test comprising at least two signal paths, at least two measurement antennas being spatially separated in the near-field of the device under test, and a signal analysis unit. Whereas each of the at least two signal paths of the device under test comprises an antenna and a power amplifier, noise of the power amplifiers of the at least two signal paths of the device under test is not phase-coherent. In this context, the signal analysis unit is configured to perform at least two time-coherent measurements with the aid of the at least two measurement antennas with respect to the device under test in near-field. In addition to this, the signal analysis unit is further configured to calculate at least one signal characteristic, especially error vector magnitude and/or signal-to-noise ratio, in far-field on the basis of the at least two time-coherent measurements in the near-field.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 28, 2020
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Corbett Rowell, Benoit Derat
  • Patent number: 10725122
    Abstract: A sensor includes an output circuit configured to generate a sensor output signal based on an input signal having a logic high or low level, as may be provided by a Schmitt trigger circuit. During normal operation, the output switches between a first percentage of the supply voltage for logic high and a second percentage of the supply voltage for logic low. To convey a failure at the output, an output signal is output as either ground or the supply voltage when a fault is detected. As such, a fault can be communicated any time the output voltage is not equal to the first percentage or the second percentage of the supply voltage.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: July 28, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ezequiel Rubinsztain, Pablo Javier Bolsinger
  • Patent number: 10718793
    Abstract: An oscilloscope is described that has a compensation signal generator configured to generate a compensation signal, a probe connector configured to be connected to the passive probe and a detection unit configured to detect whether the passive probe is connected to the probe connector or not. Further, a test and measurement system and a method are described.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: July 21, 2020
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Martin Peschke
  • Patent number: 10712407
    Abstract: An optical magnetometer comprising: a response frequency measurement unit comprising a vapor cell, a pulsed-mode pump laser and a probe laser; and a computing unit configured to compute a magnetic field change based on a difference between at least two temporally-distinct response frequency values received from the frequency measurement unit. Optionally, the response frequency measurement unit is magnetically non-shielded.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 14, 2020
    Assignee: BEN GURION UNIVERSITY OF THE NEGEV RESEARCH AND DEVELOPMENT AUTHORITY
    Inventors: Andrei Ben Amar Baranga, David Levron, Eugene Paperno, Reuben Shuker
  • Patent number: 10705163
    Abstract: Here we present a solid-state spin sensor with enhanced sensitivity. The enhanced sensitivity is achieved by increasing the T2* dephasing time of the color center defects within the solid-state spin sensor. The T2* dephasing time extension is achieved by mitigating dipolar coupling between paramagnetic defects within the solid-state spin sensor. The mitigation of the dipolar coupling is achieved by applying a magic-angle-spinning magnetic field to the color center defects. This field is generated by driving a magnetic field generator (e.g., Helmholtz coils) with phase-shifted sinusoidal waveforms from current source impedance-matched to the magnetic field generator. The waveforms may oscillate (and the field may rotate) at a frequency based on the precession period of the color center defects to reduce color center defect dephasing and further enhance measurement sensitivity.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 7, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: John F. Barry, Danielle A. Braje, Erik R. Eisenach, Christopher Michael McNally, Michael F. O'Keeffe, Linh M. Pham
  • Patent number: 10705157
    Abstract: A testing system may include an electrical cable, a computing device, a communication interface, at least one downstream device, and testing software. The communication interface may be coupled to the electrical cable and to the computing device. The at least one downstream device may be coupled to the electrical cable. The testing software may be stored on the computing device. The testing software may be configured to initiate and evaluate transfer of data between the computing device and the at least one downstream device through the electrical cable and the communication interface.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 7, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Saluka Abhishek Amarasinghe, Christopher John Allen, Edward Charles Giaimo, III, Sanketkumar Natvarbhai Patel, Attila Major, Andrew Smith Taber, Wei Guo
  • Patent number: 10705002
    Abstract: A sensor for detecting electrically conductive and/or polarizable particles, in particular for detecting soot particles, includes a substrate, a first electrode layer, and a second electrode layer, which is arranged between the substrate and the first electrode layer. An insulation layer is formed betweem the first electrode layer and the second electrode layer and at least one opening is formed in the first electrode layer and in the insulation layer, wherein the opening of the first electrode layer and the opening of the insulation layer are arranged one over the other at least in some segments in such a way that at least one passage to the second electrode layer is formed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: July 7, 2020
    Assignee: HERAEUS NEXENSOS GMBH
    Inventors: Tim Asmus, Karlheinz Wienand, Stefan Dietmann
  • Patent number: 10697802
    Abstract: A sensor device includes a two-pin current interface including an input pin configured to draw an input current and an output pin configured to output an output current, a sensor configured to generate a measurement signal, and a current modulator configured to generate a current pulse as the output current such that the output current toggles between at least two main current states based on the measurement signal. The current modulator is configured to modulate the output current such that the output current is increased, to a first current level greater than the at least two main current states, at an initial phase of the current pulse for a first duration, and to modulate the output current such that the output current is decreased, to a second level less than the at least two main current states, at a terminal phase of the current pulse for a second duration.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventors: Lorenzo Coceani, Bernhard Forster
  • Patent number: 10698006
    Abstract: An inspection apparatus includes a tester unit that applies a stimulus signal to a semiconductor apparatus, an MO crystal arranged to face a semiconductor apparatus, a light source that outputs light, an optical scanner that irradiates the MO crystal with light output from light source, a light detector that detects light reflected from the MO crystal arranged to face the semiconductor apparatus D and outputs a detection signal, and a computer that generate phase image data based on a phase difference between a reference signal generated based on a stimulus signal and the detection signal, the phase image data including a phase component indicating the phase difference, and generates an image indicating a path of a current from the phase image data.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: June 30, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomonori Nakamura, Akihiro Otaka
  • Patent number: 10698010
    Abstract: A high voltage electric power line monitor includes a current sensor, a voltage sensor, an energy harvesting power supply, and a communication device. The monitor is supported by an overhead power line support structure, such an insulator housing a sectionalizing switch. The current sensor coil and the energy harvesting coils are positioned transverse to the power line with the power lane passing through the coils. A foil patch voltage sensor and a communications antenna are carried on an electronics board positioned parallel to the monitored power line, typically below the current sensor. Both the current sensor and the voltage sensor are positioned adjacent to, but spaced apart from, the monitored power line creating an air gap between the monitor and the power line. The sensors are housed within a Faraday cage to shield the current sensor from electromagnetic contamination.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 30, 2020
    Assignee: Southern States
    Inventors: Josh Keister, Joseph R Rostron, Jiyuan Fan, Tan Tran
  • Patent number: 10670428
    Abstract: A circuit device adapted to perform detection of angular velocity observed by a capacitance type angular velocity transducer includes a drive device, a detection device, a vibration frequency controller adapted to variably control at least one of a detection frequency and a drive frequency of the capacitance type angular velocity transducer, and a storage adapted to store a correction parameter group adapted to correct a sensor characteristic of the capacitance type angular velocity transducer due to a variation of at least one of the detection frequency and the drive frequency.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: June 2, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Ryuta Nishizawa, Kei Kanemoto, Takayuki Kikuchi
  • Patent number: 10670669
    Abstract: A magnetic field sensor can include a substrate disposed in an x-y plane with x and y axes; one or more magnetoresistance elements, wherein magnetic directions of reference layers of each of the one or more magnetoresistance elements are parallel to the x axis; wherein the one or more magnetoresistance elements are operable to generate a magnetoresistance element signal; a first current conductor operable to generate a first AC magnetic field in an x-direction and a second current conductor operable to generate a second AC magnetic field in a y-direction; and a component determination circuit comprising at least two of: a first demodulator to demodulate the magnetoresistance element signal with a first clock signal with a first frequency, a second demodulator coupled to demodulate the magnetoresistance element signal with the first clock signal or with a second clock signal with a second frequency, or a low pass filter operable to filter the magnetoresistance element signal.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 2, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Bryan Cadugan
  • Patent number: 10666169
    Abstract: A control device for an AC rotary machine includes an AC rotary machine having m sets of n-phase windings, a current detector, a power converter, and a control unit that calculates voltage commands on the basis of respective differences between a current command for the AC rotary machine and current detection values obtained by the current detector, and outputs ON/OFF signals to high potential side switching elements and low potential side switching elements of the power converter by comparing applied voltages calculated on the basis of the voltage commands with a carrier wave signal, wherein the current detector, when detecting currents flowing through the n-phase windings on the basis of currents flowing through current detection resistance elements that are inserted in series into the low potential side switching elements, obtains current detection values at two or more fixed timings over a single period of the carrier wave signal.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: May 26, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventor: Akira Furukawa
  • Patent number: 10656108
    Abstract: The present disclosure describes methods and systems for determining source rock potential in a subterranean region of a hydrocarbon reservoir. One method includes receiving, an electron spin resonance (ESR) image from an in-situ ESR scanner that is attached to a wellbore at a first subterranean location, wherein the wellbore extends into the subterranean region of the hydrocarbon reservoir; determining, a spin concentration level of a source rock in the first subterranean location based on the ESR image; and determining, the source rock potential at the first subterranean location based on the determined spin concentration level.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 19, 2020
    Assignee: Saudi Arabian Oil Company
    Inventor: Sebastian Csutak
  • Patent number: 10656187
    Abstract: An image generating device is an apparatus for acquiring an image which shows a direction of an electric current flowing through a semiconductor device. The image generating device comprises a signal application unit configured to apply a stimulation signal to the semiconductor device, a magnetic detection unit configured to output a detection signal based on a magnetism generated by an application of the stimulation signal, and an image generation unit configured to generate phase image data comprising a phase component which indicates a phase difference based on the phase difference between the detection signal and a reference signal which is generated based on the stimulation signal and generate an electric current direction image which shows the direction of the electric current based on the phase image data.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: May 19, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Akihiro Otaka, Tomonori Nakamura
  • Patent number: 10648933
    Abstract: A light-trapping geometry enhances the sensitivity of strain, temperature, and/or electromagnetic field measurements using nitrogen vacancies in bulk diamond, which have exterior dimensions on the order of millimeters. In an example light-trapping geometry, a laser beam enters the bulk diamond, which may be at room temperature, through a facet or notch. The beam propagates along a path inside the bulk diamond that includes many total internal reflections off the diamond's surfaces. The NVs inside the bulk diamonds absorb the beam as it propagates. Photodetectors measure the transmitted beam or fluorescence emitted by the NVs. The resulting transmission or emission spectrum represents the NVs' quantum mechanical states, which in turn vary with temperature, magnetic field strength, electric field strength, strain/pressure, etc.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: May 12, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Hannah A. Clevenson, Dirk Robert Englund
  • Patent number: 10649044
    Abstract: A method of hyperpolarisation of nuclear spins in one or more particle(s) moving relatively to a polarisation structure, wherein a polarisation of electron spins in the polarisation structure is transferred to the nuclear spins in the particle(s), wherein for one or more of the moving particle(s) within 20 nm from a surface of the polarisation structure, the correlation time of the interaction with the nearest polarisation structure electron spin due to the molecular motion is larger than the inverse of the nuclear Larmor frequency; the electron spins in the polarisation structure are polarised above thermal equilibrium; and the polarisation transfer is performed resonantly.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 12, 2020
    Assignee: UNIVERSITÄT ULM
    Inventors: Fedor Jelezko, Martin Plenio, Ilai Schwartz, Qiong Chen, Alex Retzker
  • Patent number: 10637567
    Abstract: A measuring instrument for detecting a source of passive intermodulation (PIM) includes a first signal source, a second source and a receiver. The first and second signal sources are each connected with separate transmit antenna to transmit a first and second signal, respectively. The first transmit antenna and the second transmit antenna are arranged in a fixed relationship relative to each other such that the first signal and the second signal are combinable to generate a PIM signal at a PIM. The receiver is connected with a receive antenna and arranged in a fixed relationship relative to the first transmit antenna and the second transmit antenna to receive the PIM signal reradiated from the PIM source. The receiver is configured to receive the PIM signal and indicate detection of the PIM source in response to receiving the PIM signal.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: April 28, 2020
    Assignee: ANRITSU COMPANY
    Inventor: Donald Anthony Bradley