Patents Examined by Rakesh K Dhingra
  • Patent number: 10811234
    Abstract: A plasma processing apparatus includes supporting members, connecting members and a sliding member. Each of the supporting members is partially disposed in a disc-shaped cooling plate and configured to support an upper electrode in a direction of gravity. Each of the connecting members is partially disposed in the cooling plate and extends in a diametrical direction of the cooling plate to be engaged with the corresponding supporting member. The sliding member is configured to slide the connecting members inward in the diametrical direction of the cooling plate, thereby pushing upward the supporting member and lifting the upper electrode to the cooling plate.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: October 20, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shin Matsuura, Jun Young Chung
  • Patent number: 10804080
    Abstract: The reliability of a plasma processing apparatus can be improved, and the yield of plasma processing can be improved. A plasma etching apparatus 100 has a susceptor ring 113 covering the surface of a sample stage, a conductor ring 131 disposed in the interior of the susceptor ring 113 and to which second high frequency electric power is supplied from a second high frequency power source, and an electric power supply connector 161 configuring a path for supplying the second high frequency electric power to the conductor ring 131. Further, the electric power supply connector 161 includes a plate spring 135 disposed in the interior of an insulating boss 144 disposed in a through hole 120c of the sample stage and having resiliency in such a manner that the plate spring 135 is connected to an upper terminal 143 and a lower terminal 145, is biased in an up-down direction P, and is expanded and contracted.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 13, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Tooru Aramaki, Kenetsu Yokogawa
  • Patent number: 10804120
    Abstract: A temperature controller of a plasma-processing apparatus including a heating unit and a cooling unit. The heating unit is configured to heat a liner on an inner surface of a plasma chamber in which a plasma is formed. The cooling unit is configured to cool the liner to controls a temperature of an upper electrode in the plasma chamber.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 13, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seong-Moon Ha, Min-Kyu Sung, Seung-Hee Cho, Seong-Chul Choi, Kyung-Sun Kim, Sang-Ho Lee
  • Patent number: 10796916
    Abstract: A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electromagnetic energy may be conditioned prior to entering the interior cavity to improve uniformity or stability of the electric field. The conditioning may include, but is not limited to, phase angle, field angle, and number of feeds into the interior cavity.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 6, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Merritt Funk, Jianping Zhao, Lee Chen
  • Patent number: 10770329
    Abstract: A gas flow is described to reduce condensation with a substrate processing chuck. In one example, a workpiece holder in the chamber having a puck to carry the workpiece for fabrication processes, a top plate thermally coupled to the puck, a cooling plate fastened to and thermally coupled to the top plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate, a base plate fastened to the cooling plate opposite the puck, and a dry gas inlet of the base plate to supply a dry gas under pressure to a space between the base plate and the cooling plate to drive ambient air from between the base plate and the cooling plate.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hun Sang Kim, Michael D. Willwerth
  • Patent number: 10770328
    Abstract: Apparatus for processing a substrate is disclosed herein. In some embodiments, a substrate support may include a substrate support having a support surface for supporting a substrate the substrate support having a central axis; a first electrode disposed within the substrate support to provide RF power to a substrate when disposed on the support surface; an inner conductor coupled to the first electrode about a center of a surface of the first electrode opposing the support surface, wherein the inner conductor is tubular and extends from the first electrode parallel to and about the central axis in a direction away from the support surface of the substrate support; an outer conductor disposed about the inner conductor; and an outer dielectric layer disposed between the inner and outer conductors, the outer dielectric layer electrically isolating the outer conductor from the inner conductor. The outer conductor may be coupled to electrical ground.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xing Lin, Douglas A. Buchberger, Jr., Xiaoping Zhou, Andrew Nguyen, Anchel Sheyner
  • Patent number: 10755899
    Abstract: The inventive concepts provide a substrate treating apparatus. The apparatus includes a process chamber, a substrate support unit, a gas supply unit, a microwave applying unit, an antenna plate, a slow-wave plate, a dielectric plate, and an exhaust baffle, and a liner. The liner includes a body having a ring shape facing an inner sidewall of the process chamber, and a flange extending from the body into a wall portion of the process chamber. The flange prevents an electric field of a microwave and a process gas from being provided into a gap between the process chamber and the body. Thus, it is possible to inhibit particles from being generated by damage of the inner sidewall of the process chamber by plasma, and drift distances of the particles can be reduced to inhibit the particles from reaching a substrate.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 25, 2020
    Assignee: SEMES CO., LTD.
    Inventors: Yong Su Jang, Sun Rae Kim, Sung Hwan Hong
  • Patent number: 10752994
    Abstract: An apparatus for depositing a coating on a substrate at atmospheric pressure comprises (a) a plasma torch comprising a microwave source coupled to an antenna disposed within a chamber having an open end, the chamber comprising a gas inlet for flow of a gas over the antenna to generate a plasma jet; (b) a substrate positioned outside the open end of the chamber a predetermined distance away from a tip of the antenna; and (c) a target material to be coated on the substrate disposed at the tip of the antenna.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: August 25, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: David N. Ruzic, Yuilun Wu, Ivan Shchelkanov, Jungmi Hong, Zihao Ouyang, Tae Seung Cho
  • Patent number: 10748745
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua
  • Patent number: 10734197
    Abstract: A plasma process apparatus that utilizes plasma so as to perform a predetermined process on a substrate, and includes a process chamber that houses a substrate subjected to the predetermined plasma process; a microwave generator; a dielectric window attached to the process chamber and provided with a concave portion provided at an outer surface of the dielectric window opposite to the process chamber and a through hole penetrating the dielectric window to the process chamber; a microwave transmission line; and a first process gas supplying portion including a gas conduit including a first portion provided at a front end and a second portion having a larger diameter than the first portion, the gas conduit being inserted from outside of the process chamber such that the first portion is inserted in the through hole and the second portion is inserted in the concave portion.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: August 4, 2020
    Assignee: Tokyo Electron Limited
    Inventor: Masahide Iwasaki
  • Patent number: 10734198
    Abstract: A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power P? into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power P? into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: August 4, 2020
    Assignee: Element Six Technologies Limited
    Inventors: John Robert Brandon, Ian Friel, Michael Andrew Cooper, Geoffrey Alan Scarsbrook, Ben Llewlyn Green
  • Patent number: 10734199
    Abstract: A microwave plasma generating device for plasma oxidation of SiC, comprising an outer cavity and a plurality of micro-hole/micro-nano-structured double-coupling resonant cavities disposed in the outer cavity. Each resonant cavity includes a cylindrical cavity. A micro-hole array formed by a plurality of micro-holes is uniformly distributed on a peripheral wall of the cylindrical cavity, a diameter of each of the micro-holes is an odd multiple of wavelength, and an inner wall of the cylindrical cavity has a metal micro-nano structure, the metal micro-nano structure has a periodic dimension of ?/n, where ? is wavelength of an incident wave, and n is refractive index of material of the resonant cavity. The outer cavity is provided with an gas inlet for conveying an oxygen-containing gas into the outer cavity, and the oxygen-containing gas forms an oxygen plasma around the resonant cavities for oxidizing SiC; a stage is disposed under the resonant cavities.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 4, 2020
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinyu Liu, Yidan Tang, Shengkai Wang, Yun Bai, Chengyue Yang
  • Patent number: 10727088
    Abstract: The present invention provides a plasma processing apparatus having a radio frequency power supply supplying time-modulated radio frequency power which is controllable widely with high precision, and a plasma processing method using the plasma processing apparatus. The plasma processing apparatus includes: a vacuum chamber; a first radio frequency power supply for generating plasma in the vacuum chamber; a sample holder disposed in the vacuum chamber, on which a sample is placed; and a second radio frequency power supply supplying radio frequency power to the sample holder, wherein at least one of the first radio frequency power supply and the second radio frequency power supply supplies time-modulated radio frequency power, one of parameters of controlling the time-modulation has two or more different control ranges, and one of the control ranges is a control range for a high-precision control.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: July 28, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Michikazu Morimoto, Yasuo Ohgoshi, Yuuzou Oohirabaru, Tetsuo Ono
  • Patent number: 10727031
    Abstract: This application is directed to an apparatus for creating microwave radiation patterns for an object detection system. The apparatus includes a waveguide conduit having first slots at one side of the conduit and corresponding second slots at an opposite side of the conduit. The waveguide conduit is coupled to a microwave source for transmitting microwaves from the microwave source through the plurality of first slots. A plunger is moveably positioned in the waveguide conduit from one end thereof. The plunger allows the waveguide conduit to be tuned to generally optimize the power of the microwaves exiting the first slots. Secondary plungers are each fitted in one of the second slots to independently tune or detune microwave emittance through a corresponding first slot.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: July 28, 2020
    Inventor: Peter F. Vandermeulen
  • Patent number: 10727030
    Abstract: A microwave plasma source for forming a surface wave plasma by radiating a microwave into a chamber of a plasma processing apparatus, includes: a microwave output part; a microwave transmission part configured to transmit microwave outputted from the microwave output part; and a microwave radiation member configured to radiate the microwave into the chamber, wherein the microwave transmission part includes a microwave introduction mechanism configured to introduce the microwave into the microwave radiation member. The microwave radiation member includes: a metal main body; a dielectric slow-wave member installed in a portion of the main body; a plurality of slots configured to radiate the microwave introduced through the dielectric slow-wave member therethrough; and a dielectric microwave transmission member installed in a portion facing the chamber in the main body to cover a region where the slots are formed; and a plurality of dielectric layers installed to be separated from each other.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 28, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Taro Ikeda, Tomohito Komatsu
  • Patent number: 10707061
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10707062
    Abstract: A microwave generator system for use in a microwave plasma enhanced chemical vapour deposition (MPECVD) system, the microwave generator system comprising: a microwave generator unit configured to produce microwaves at an operating power output suitable for fabricating synthetic diamond material via a chemical vapour deposition process; a fault detection system configured to detect a fault in the microwave generator unit which results in a reduction in the operating power output or a change in frequency; and a re-start system configured to restart the microwave generator unit in response to a fault being detected and recover the operating power output or frequency in a time period of less than 10 seconds after the fault in the microwave generator unit which caused the reduction in the operating power output or the change in frequency.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 7, 2020
    Assignee: Element Six Technologies Limited
    Inventors: John Robert Brandon, Neil Perkins
  • Patent number: 10707058
    Abstract: Embodiments include a plasma processing tool that includes a processing chamber, and a plurality of modular microwave sources coupled to the processing chamber. In an embodiment, the plurality of modular microwave sources include an array of applicators that are positioned over a dielectric body that forms a portion of an outer wall of the processing chamber. The array of applicators may be coupled to the dielectric body. Additionally, the plurality of modular microwave sources may include an array of microwave amplification modules. In an embodiment, each microwave amplification module may be coupled to at least one of the applicators in the array of applicators. According to an embodiment, the dielectric body be planar, non-planar, symmetric, or non-symmetric. In yet another embodiment, the dielectric body may include a plurality of recesses. In such an embodiment, at least one applicator may be positioned in at least one of the recesses.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Farzad Houshmand, Christian Amormino, Philip Allan Kraus
  • Patent number: 10699909
    Abstract: A plasma processing apparatus includes a processing chamber configured to perform a plasma processing on a sample, a first radio frequency power supply configured to generate a plasma, a sample stage configured to place the sample thereon, a second radio frequency power supply configured to supply a radio frequency power to the sample stage, a mass flow controller configured to supply a gas into the processing chamber, and a control device configured to change the radio frequency power supplied from the first radio frequency power supply or the second radio frequency power supply based on a change of plasma impedance after a first gas is switched to a second gas.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: June 30, 2020
    Assignee: HITACH HIGH-TECH CORPORATION
    Inventors: Yasushi Sonoda, Motohiro Tanaka
  • Patent number: 10685812
    Abstract: A microwave antenna includes a first spiral conduit having a first conduit end, first plural ports in a floor of the first spiral conduit spaced apart along the length of the first spiral conduit; an axial conduit coupled to a rotatable stage; and a distributor waveguide comprising an input coupled to the axial conduit and a first output coupled to the first conduit end.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: June 16, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Michael W. Stowell