Patents Examined by Rebecca Janssen
  • Patent number: 11945030
    Abstract: A method of forming an article includes producing a base powder including a plurality of base particles. Each base particle includes an external surface and a first material. The method further includes removing one or more oxides from the external surface of each base particle to form a cleaned powder including a plurality of cleaned particles. Each cleaned particle includes a cleaned external surface made of the first material. The method further includes coating the cleaned external surface of each cleaned particle with a second material having a greater oxidation resistance than the first material to form a coated powder including a plurality of coated particles. Each coated particle includes an external layer including the second material that fully covers the cleaned external surface made of the first material. The method further includes forming the article using the coated powder.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: April 2, 2024
    Assignee: ROLLS-ROYCE PLC
    Inventor: David A. Stewart
  • Patent number: 11938535
    Abstract: Textured particles and methods of making the same. A textured particle includes an inner core and a spherical solid outer shell including an outer surface. The inner core is inside the outer shell. The outer surface includes a first tier texture including a first metal, wherein the first metal is greater than 50 atomic % of a total atomic content of all metals in the first tier texture; a second tier texture including the second metal, wherein the second metal is greater than 50 atomic % of a total atomic content of all metals in the second tier texture; and a third tier texture including the third metal, wherein the third metal is greater than 50 atomic % of a total atomic content of all metals in the third tier texture. The first metal, second metal, and third metals are different metals.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Martin Thuo, Boyce S. Chang, Andrew Martin, Winnie M. Kiarie
  • Patent number: 11938542
    Abstract: According to the invention, a metal workpiece made by additive manufacturing is subjected, following the additive manufacturing process, to a cold treatment in which the workpiece is cooled to a lower target temperature of less than minus 30° C. in a cooling phase and is then heated up to an upper target temperature in a heating phase. The cold treatment significantly improves the properties of the workpiece in respect of the mechanical quality thereof.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 26, 2024
    Assignee: Messer SE & Co. KGaA
    Inventors: Thomas Böckler, Matthias Dusil, Bernd Hildebrandt, Dirk Kampffmeyer, Georg Selders
  • Patent number: 11938537
    Abstract: A 3D printing system and methods to selectively pattern dense feedstock based on selective inhibition sintering (SIS). A sintering selectivity agent (inhibitor or promoter) is selectively deposited on a build layer according to the pattern boundary. When the layers are built-up and the part is sintered, the inhibited region remains unbound, thus defining the edge of the part. The material contain powder embedded in cohesive binder that make the adjacent layer adhere together. The build process involves forming the sheets of dense feedstock embedded binder, followed by depositing ink to promote selective sintering onto the layer. Once the build is complete, the process continues with the binder removal, sintering and finishing processes.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: March 26, 2024
    Assignee: Xerox Corporation
    Inventors: Mahati Chintapalli, Sean Garner, Ashish Pattekar, Anne Plochowietz
  • Patent number: 11926106
    Abstract: An additively manufactured component and a method for manufacturing the same are provided. The additively manufactured component includes a cross sectional layer having a surface surrounding the cross sectional layer. The cross sectional layer is formed by moving a focal point of an energy source over a bed of additive material. A surface irregularity is formed on the surface by manipulating the energy level of the energy source. The surface may include a datum feature positioned at a predetermined location relative to the surface irregularity and the surface irregularity may be greater than a surface roughness of the surface but less than one millimeter.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: March 12, 2024
    Assignee: General Electric Company
    Inventors: Scott Alan Gold, Thomas Graham Spears
  • Patent number: 11904388
    Abstract: A three-dimensional (3D) object printer has an ejector head with a single nozzle that is fluidly connected to a plurality of orifices in an orifice plate of the ejector head. An ejection of material through the single nozzle is emitted through the plurality of orifices simultaneously. In one embodiment, some of the orifices are oriented at an angle to a normal to the plane of the orifice plate. A splicer of the printer that generates machine ready instructions for operation of the printer identifies a standoff distance between the orifice plate and a surface onto which drops are being ejected to achieve a target drop spacing for the drops ejected onto the surface. In this manner, a material density for structure within a layer can be achieved without needing to increase the ejection frequency significantly or requiring the printer to incorporate multiple ejector heads.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: February 20, 2024
    Assignee: Additive Technologies LLC
    Inventors: Denis Cormier, Santokh S. Badesha, Varun Sambhy
  • Patent number: 11904391
    Abstract: A method of making an article includes depositing a plurality of layers to form a three-dimensional preform, sintering the preform to form a sintered preform, and infiltrating the preform with at least one metal to form the article. At least one layer of the plurality of layers is formed from a beryllium-containing composition including beryllium powder. The infiltrating metal can be selected from aluminum and magnesium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 20, 2024
    Assignee: Materion Corporation
    Inventor: James Andrew Yurko
  • Patent number: 11883879
    Abstract: A 3D printer includes an ejector configured to receive a build material. The 3D printer also includes a valve configured to control flow of the build material into or through the ejector. The valve includes a cooler configured to cool the build material to below a melting point of the build material to form a solid plug to prevent the build material from flowing therethrough. The valve also includes a heater configured to re-heat the build material to above the melting point to allow the build material to flow therethrough. The 3D printer also includes a nozzle positioned downstream from the valve. The build material is ejected through the nozzle. The 3D printer also includes a substrate positioned below the nozzle. The build material lands on the substrate and cools and solidifies thereon to form a 3D object.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: January 30, 2024
    Assignee: ADDITIVE TECHNOLOGIES, LLC
    Inventors: Kareem Tawil, Christopher T. Chungbin
  • Patent number: 11885000
    Abstract: Apparatuses and methods for in situ thermal treatment for PBF systems are provided. An apparatus for a PBF-based 3-D printer can include a heating element for heating a gas, wherein the heated gas is delivered via at least one port of the 3-D printer to conduct heat treatment on a build piece during printing. A method for thermal treatment in a PBF-based 3-D printer can include heating a gas and delivering it via at least one port of the 3-D printer arranged proximate a build piece to conduct heat treatment during printing. An apparatus for a PBF-based 3-D printer can include a temperature-regulating element for changing a temperature of a gas, at least one channel for delivering the gas to a plurality of ports, and a controller for determining gas temperatures and durations of application of the gas via different ones of the plurality of the ports.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 30, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Prabir Kanti Chaudhury
  • Patent number: 11878442
    Abstract: According to some embodiments, a system includes a three-dimensional (3D) printer, a hydraulic press, and a kiln. The three-dimensional printer includes a print bed, a first printhead, and a second printhead. The first printhead is configured to deposit a layer of a first powder on the print bed. The second printhead is configured to deposit a layer of a second powder on the print bed. The hydraulic press is configured to compress a greenware to form a compressed greenware. The kiln is configured to heat the compressed greenware to a reaction temperature to form an object. The object is surrounded by an excess of the first powder. The kiln is also configured to heat the object surrounded by the excess of the first powder to a melting temperature. The melting temperature is at least the melting point of the first powder and less than the melting point of the object.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: January 23, 2024
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 11839916
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus is equipped with an orifice cleaning system that removes metal drops that have adhered to a plate, an orifice in the plate, and a nozzle ejecting melted metal drops through the orifice during object forming operations. The orifice cleaning system includes an orifice cleaning tool that consists essentially of a soft carbon material, such as graphite. The orifice cleaning tool is configured with a handle that is gripped by an articulated arm to move the orifice cleaning tool against the plate, the orifice, and a portion of the nozzle at the orifice.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: December 12, 2023
    Assignee: Additive Technologies LLC
    Inventors: Viktor Sukhotskiy, Joseph C. Sheflin, Brian M. Balthasar, Peter Knausdorf, Chu-Heng Liu
  • Patent number: 11833604
    Abstract: Methods for forming an electrode for use in forming a honeycomb extrusion die. The method includes forming, by means of an additive manufacturing process, an electrode includes a base having a web extending from the base. The web defines a matrix of cellular openings. The method further includes forming a secondary electrode having a plurality of pins. The plurality of pins are shaped and arranged so as to mate with the matrix of cellular openings defined by the web of the electrode. The method further includes machining the electrode using the secondary electrode to smooth surfaces of the electrode formed by the additive manufacturing process.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: December 5, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Eugene Antesberger, Dana Craig Bookbinder, Dana Eugene Coots, Seyed Amir Farzadfar, Dominick John Forenz, Ryan Joseph Grohsmeyer, Mark Lee Humphrey, Zakariya Radwan Khayat, Kenneth Richard Miller, Richard Curwood Peterson, John Charles Rector
  • Patent number: 11833586
    Abstract: A three-dimensional (3D) printing method and apparatus are disclosed for freeform fabrication of metal articles. 3D printed articles are formed from a build material comprising metal powder(s), polymer(s), and solvent(s). A coagulation agent, such as a nebulized non-solvent, is disposed onto/about the build material during 3D printing to cause at least partial solidification of the build material to form a green body structure. Multiple build materials can be mixed at a variable ratio to achieve a composition gradient through the green body structure. The 3D printed green body structure can be heated to remove some or all of the polymer, solvent, and/or for debinding. The debinded green body structure can be sintered at a specific sintering temperature or over a temperature gradient, for a period of time, in accordance with the sintering properties of the particular metal powder in the debinded green body structure, to form a finished metal part.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: December 5, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: Yong Huang, Marc Sole Gras, Bing Ren
  • Patent number: 11827959
    Abstract: Metallic matrix composites are synthesized by mixing a first reactant, a second reactant and a nucleator compound to obtain a reaction mixture, and heating the reaction mixture to an auto-activation temperature to initiate a self-propagating high-temperature synthesis reaction between the first and second reactants. The metallic matrix composite can include a metallic matrix and an in situ formed reinforcement. The reinforcement can be formed of discrete particles substantially uniformly dispersed within the metallic matrix. Each of the particles can have a reinforcement constituent disposed about a core formed of the nucleator compound.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: November 28, 2023
    Assignee: PARKER LODGE HOLDINGS LLC
    Inventor: Scott Richard Holloway
  • Patent number: 11801551
    Abstract: In some embodiments, the present disclosure includes a method of forming a body of an earth-boring downhole tool. A mold is formed that has at least one interior surface defining a mold cavity within the mold. The mold cavity has a shape corresponding to a shape of the body of the earth-boring downhole tool to be formed therein. At least one insert is formed that includes particles of hard-phase material and a binder material using an additive manufacturing process. The at least one insert is positioned within the mold cavity. Additional particles of hard-phase material are provided within the mold cavity, and the additional particles of hard-phase material are infiltrated with molten metal, thus sintering and/or infiltrating the at least one insert to form the body of the earth-boring downhole tool. The resulting body of the earth-boring downhole tool includes the sintered and/or infiltrated at least one insert.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 31, 2023
    Assignee: Baker Hughes Holding LLC
    Inventors: Stephen Duffy, Michael T. Savage, James Andy Oxford
  • Patent number: 11788162
    Abstract: Disclosed are a method of manufacturing cage for a constant velocity joint and a cage for a constant velocity joint manufactured using the same for providing a cage having improved hardness, strength, and elongation while having a structure with a uniform core part and surface and for ensuring economic feasibility by reducing manufacturing time. The method includes a cutting operation of forming a structure having an outer shape by cutting a cylindrical pipe, forming an outer circumference of the cut structure to have a curved surface thereon, performing a turning operation on a surface of the formed structure, a punching operation of forming a window in the surface of the structure on which the turning operation is performed, a broaching operation of processing an edge of the window formed via punching, and a heat treatment operation of fully hardening the completely broached cage via austempering.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: October 17, 2023
    Assignees: SEOHAN INDUSTRY CO., LTD., KOREA FLANGE CO., LTD.
    Inventors: Jeong Lyul Park, Won Kew Ban, Hyo Jin Kim
  • Patent number: 11786966
    Abstract: A sheet for heat bonding, having a pre-sintering layer that becomes a sintered layer by being heated, and an adhesion layer.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 17, 2023
    Assignee: NITTO DENKO CORPORATION
    Inventors: Satoshi Honda, Yuki Sugo, Mayu Shimoda
  • Patent number: 11788167
    Abstract: The device and method for manufacturing metal clad strip continuously provided by the present invention, combines casting, rolling and heat treatment used for the single material manufacture with the continuous and large-scale manufacture method for the clad strip, greatly improves the productivity of clad strip. The present invention can be used for manufacturing single-sided or double-sided clad strips with different thickness specifications, wherein the base layer material or the clad layer material can be selected in a wide range, including carbon steel, stainless steel, special alloy steel, titanium, copper and the like. In the present application, continuous casting and rolling clad strip is implemented, which decrease the energy consumption and costs.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 17, 2023
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Qingfeng Zhang, Sihai Jiao
  • Patent number: 11767443
    Abstract: A copper particle mixture ensures suppression of copper oxidation and high dispersibility, and that can be sintered at a low temperature in a short period of time can suitably be used for a conductive copper ink material. The copper particle mixture contains copper fine particle A and copper nanoparticle B, the copper fine particle A having an average particle diameter of 0.1 ?m to 5 ?m, and being coated with at least one dicarboxylic acid selected from the group consisting of malonic acid and oxalic acid, the copper nanoparticle B comprising a central portion comprising a copper single crystal, and a protective layer surrounding the central portion, and having an average particle diameter of 1 nm to 100 nm, and the protective layer of the copper nanoparticle B containing at least one member selected from the group consisting of C3-6 primary alcohols, C3-6 secondary alcohols, and derivatives thereof.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: September 26, 2023
    Assignee: THE SCHOOL CORPORATION KANSAI UNIVERSITY
    Inventor: Hideya Kawasaki
  • Patent number: 11759858
    Abstract: A method for manufacturing a metal object having a solid lubricating surface layer includes: providing a metal blank having a surface; providing a plurality of microparticles and solid lubricating powder, and mixing them together, wherein the microparticles have a hardness greater than that of the surface; and projecting the microparticles and the solid lubricating powder onto the surface, wherein the microparticles cause plastic flow on the surface to form a compressive stress layer, and the solid lubricating powder adheres to the compressive stress layer to form a solid lubricating surface layer.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 19, 2023
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Tseng-Jen Cheng, Kai-Han Chen, Fu-Chuan Hsu, Chih-Hao Lin