Patents Examined by Robert N Wieland
  • Patent number: 9887573
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: February 6, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 9878158
    Abstract: An electrical neuromodulation system and method of meeting a therapeutic goal for a patient using a neuromodulation device. A modulation parameter value is varied by a step size. The neurostimulation device instructs the neuromodulation device to deliver electrical energy to at least one electrode in accordance with the varied modulation parameter value. A therapeutic feedback indicator is compared to a threshold in response to the delivery of the electrical energy. Whether the therapeutic goal has been met is determined based on the comparison, and the previous steps are repeated to determine the modulation parameter value at the resolution of the step size that minimizes energy consumption of the neuromodulation device required to meet the therapeutic goal when delivering the electrical energy to the electrode(s) in accordance with the varied modulation parameter value.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: January 30, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley Lawrence Hershey, Kerry Bradley
  • Patent number: 9878173
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a microphone. The WCD system might be ready to deliver a shock, but may first wait before doing so until it hears from a bystander a preset ready word, such as: “CLEAR”.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 30, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 9872979
    Abstract: A circumferential headset for use in delivering electrical stimulation to the skin surface of the head.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: January 23, 2018
    Assignee: NEUROLIEF LTD.
    Inventors: Amit Dar, Jonathan Bar-Or, Amir Cohen, Ron Belson
  • Patent number: 9872730
    Abstract: A coaptive surgical sealing tool may be similar to an ordinary hemostat with long (50, 60, 70 or 80 mm) thin jaws for sliding into the liver parenchyma, without tearing the larger blood vessels. The jaws are spring loaded and are designed for uniform compression, and to avoid closing too quickly. The jaws are capable of sealing a 50, 60, 70 or 80 mm sealing length, in a single bite, although it can also seal shorter lengths as well. The tool can be used with existing ablative therapy microwave generators. The tool may be provided with irrigation and/or suction.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 23, 2018
    Assignee: City of Hope
    Inventor: Gagandeep Singh
  • Patent number: 9867673
    Abstract: There is provided a medical support device for holding and positioning a needle. This device is particularly useful for positioning needles in a less invasive puncture treatment. This device comprises two rotational elements and at least one needle guide attached to a rotational element and. The needle guide guides the direction of insertion of a needle-like instrument and includes a guide portion that guides a needle or other needle-like instrument where the puncture point of the needle in a first position is different from the puncture point when the needle guide guides the needle in a second position.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: January 16, 2018
    Assignees: Canon U.S.A, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Kazufumi Onuma, Takahisa Kato, Nobuhiko Hata, Kemal Tuncali, Brian Ninni, Peter Tia
  • Patent number: 9867675
    Abstract: A surgical instrument includes an outer housing shell defining a cavity. The outer housing shell defines an upper outer housing half and a lower outer housing half. The upper outer housing half defines a longitudinal axis. An instrument module is selectively insertable into the cavity of the outer housing shell. The instrument module includes an inner housing shell, at least one motor disposed within the inner housing shell, a control board being in electrical communication with the at least one motor, and an energy source being in electrical communication with the at least one motor and the control board. The instrument module is inserted into the cavity of the outer housing shell in such a manner that the operative axis of the at least one motor is substantially parallel to the longitudinal axis of the upper outer housing half.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: January 16, 2018
    Assignee: COVIDIEN LP
    Inventors: John Beardsley, Matthew Chowaniec, Russell Pribanic
  • Patent number: 9867987
    Abstract: A system embodiment comprises a neural stimulator having a housing with an electrode on the housing and having a neural stimulation lead with an electrode on the neural stimulation lead. The neural stimulator is configured to deliver a neural stimulation therapy through the neural stimulation lead and remotely sense a heart rate using the electrode on the neural stimulation lead and the electrode on the housing of the neural stimulator.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 16, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Kenneth L. Baker
  • Patent number: 9867659
    Abstract: An electrosurgical vessel sealing instrument having a first and a second opposing jaw member at a distal end thereof, wherein each jaw member includes a jaw housing, a seal plate having a tissue contacting surface and a side wall, and an insulating region disposed on the side wall of the seal plate. The instrument includes the ability to move the jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue. The insulating region enables precision overmolding of the jaw housing to the seal plate, while advantageously reducing thermal spread and edge cutting during vessel sealing procedures.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: January 16, 2018
    Assignee: COVIDIEN LP
    Inventors: Kim V. Brandt, Allan G. Aquino
  • Patent number: 9867556
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 16, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 9867976
    Abstract: An electrode for use with a therapeutic current delivery system can include a flexible, water vapor-permeable, conductive adhesive material; a current dispersing element in contact with the conductive adhesive material; and a non-conductive, flexible, water vapor-permeable, electrically-insulating top layer provided in contact with the current dispersing element. The current dispersing element can be conductive at least laterally along a plane of the electrode. The conductive adhesive material can be conductive in a direction substantially orthogonal to the plane of the electrode and semi-conductive in a direction substantially lateral to the plane of the electrode.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: January 16, 2018
    Assignee: ZOLL MEDICAL CORPORATION
    Inventor: Gary A. Freeman
  • Patent number: 9854979
    Abstract: An imaging device includes a hollow flexible shaft having a central longitudinal axis and an imaging window therein. An optical fiber extends within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is attached to the hollow flexible shaft and aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window. A handle is attached to the hollow flexible shaft configured rotate the hollow flexible shaft at speeds of greater than 1,000 rpm.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 2, 2018
    Assignee: Avinger, Inc.
    Inventors: Peter H. Smith, Manish Kankaria, Priyanshu Gupta, Nicholas J. Spinelli, Charles W. McNall
  • Patent number: 9854961
    Abstract: The present invention relates to a medical needle which comprises an elongate tube and at least one optical fiber, e.g. two fibers, arranged within the elongate tube, for making optical measurements at the distal end of the needle. The optical fibers(s) has a beveled distal end surface, wherein a plane touching the beveled distal end surface and a longitudinal extension axis of the optical fiber forms a bevel angle which is 30°-35°. Such needle is advantageous for providing a medical needle which is reliable and long term stable, can be manufactured in low cost using known optical fiber materials, thus allowing it to form part of disposable medical kits. Still, the bevel angle of 30°-35° provides a needle which is easy to insert and which provides a low tendency to cause tissue sticking. Especially, the elongate tube and the optical fiber end(s) have the same beveled angle within the range 30°-35°, thus allowing a smooth front surface of the needle.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 2, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Klaas Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen, Bernardus Hendrikus Wilhelmus Hendriks, Christian Reich, Johannes Antonius Van Rooij, Waltherus Cornelis Jozef Bierhoff, Marjolein Van Der Voort, Axel Winkel, Stephan Voss, Torre Michelle Bydlon
  • Patent number: 9855096
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 2, 2018
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9848782
    Abstract: Provided are a blood pressure estimation device, and the like, the device being capable of accurately estimating blood pressure. The blood pressure estimation device includes a blood pressure estimation unit which estimates a blood pressure on the basis of a pressure in a specific time period and differences between a plurality of pulse wave signals measured in the specific time period due to the pressure.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: December 26, 2017
    Assignee: NEC CORPORATION
    Inventors: Yuji Ohno, Masahiro Kubo, Kimiyasu Takoh, Katsumi Abe, Ersin Altintas, Hiroshi Imai, Osamu Tochikubo
  • Patent number: 9848942
    Abstract: A coaptive surgical sealing tool may be similar to an ordinary hemostat with long (50, 60, 70 or 80 mm) thin jaws for sliding into the liver parenchyma, without tearing the larger blood vessels. The jaws are spring loaded and are designed for uniform compression, and to avoid closing too quickly. The jaws are capable of sealing a 50, 60, 70 or 80 mm sealing length, in a single bite, although it can also seal shorter lengths as well. The tool can be used with existing RF/bi-polar cautery generators.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: December 26, 2017
    Assignee: City of Hope
    Inventor: Gagandeep Singh
  • Patent number: 9849282
    Abstract: A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: December 26, 2017
    Assignee: Aionx Antimicrobial Technologies, Inc.
    Inventors: Thomas A. Fuller, Richard A. Wysk, Wayne J. Sebastianelli
  • Patent number: 9844674
    Abstract: A neuromodulation system configured for providing sub-threshold neuromodulation therapy to a patient. The neuromodulation system comprises a neuromodulation lead having at least one electrode configured for being implanted along a spinal cord of a patient, a plurality of electrical terminals configured for being respectively coupled to the at least one electrode, modulation output circuitry configured for delivering sub-threshold modulation energy to active ones of the at least one electrode, and control/processing circuitry configured for selecting a percentage from a plurality of percentages based on a known longitudinal location of the neuromodulation lead relative to the spinal cord, computing an amplitude value as a function of the selected percentage, and controlling the modulation output circuitry to deliver sub-threshold modulation energy to the patient at the computed amplitude value.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 19, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Bradley L. Hershey, Dongchul Lee
  • Patent number: 9844678
    Abstract: Methods and devices providing multiple criteria for use in arrhythmia identification. Based on inputs including defined rules or parameters, one of a more conservative or more aggressive set of arrhythmia identification parameters can be selected. One or the other of the selectable sets of arrhythmia identification parameters may also be adaptive or modifiable during the use of the system, for example, in response to identified nonsustained episodes, the more conservative set of arrhythmia identification parameters can be modified to become still more conservative. Such modification of arrhythmia identification criteria allows reduced time to therapy when indicated, while allowing more deliberate decisions in other circumstances.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 19, 2017
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Rick Sanghera
  • Patent number: 9844673
    Abstract: Example apparatus and methods cause activation of target neural tissue through electrical stimulation of a connected white matter tract to reduce the hyper-excitability of the target neural tissue and thus reduce seizures while preserving memory in humans. Example apparatus and methods apply low frequency (e.g., <10 HZ) electrical stimulation to the forno-dorso-commissure (FDC), detect an electrical signal generated in an area connected to, innervated by, or that can be activated by the FDC in response to the stimulation, and reconfigure the stimulation based on the detected signal and a desired therapeutic effect. The stimulation may be reconfigured to produce an electrical stimulation waveform that will produce the desired therapeutic effect. The desired therapeutic effect may be, for example, reducing hyper-excitability of neural tissue in a target area, reducing hippocampal spikes, reducing seizure odds, or improving recall.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 19, 2017
    Assignee: Case Western Reserve University
    Inventors: Mohamad Koubeissi, Dominique Durand, Jonathan Miller, Hans Luders