Patents Examined by Sarah Woo
  • Patent number: 6434308
    Abstract: An optical transceiver system including a plurality of transceiver nodes with at least one two-dimensional integrated circuit array of optical emitters and detectors mounted on an ASIC drive circuit and forming a focal plane; a lens or light collimator located adjacent for directing light to and from the emitter and detectors; an epoxy stand off located peripherally around each focal plane to prevent contact between the focal plane and the lens or collimator and to prevent entry of contaminants therebetween; and at least one fiber optic bundle to convey light between each of the transceiver nodes through the perspective lenses or collimators.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: August 13, 2002
    Assignee: Teraconnect, Inc
    Inventor: John A. Trezza
  • Patent number: 6418251
    Abstract: A laser-diode assembly for generating a frequency-stabilized narrow-bandwidth light comprises a light source in the form of a semiconductor laser diode coupled via a first optical coupling device to one end of a first optical fiber. The other end of this fiber is coupled to a second or an output fiber via a second optical coupling device. The assembly is characterized by the fact that a long inner cavity is formed by a section of the optical system between two oppositely directed mirrors. The first mirror is applied onto the back side of the semiconductor laser diode, and the second mirror is applied onto a flat front side of one optical lens element or onto the back side of another optical lens element. These optical lens elements are parts of an optical coupling between the first and the second fibers. The first mirror completely reflects the entire light incident onto this mirror, whereas the second mirror reflects a major part of the light, e.g., about 90% and passes only a small part, e.g.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: July 9, 2002
    Inventor: Bogie Boscha
  • Patent number: 6415075
    Abstract: An optical signal limiter is provided for limiting transmission of a continuous wave optical signal that exceeds a preselected threshold power level. The limiter includes a body having input and output ends that is formed at least in part from a material having a negative thermal index coefficient of between about −0.5×10−4 °C.−1 and −4.0×10−4 °C.−1 and an absorption coefficient of between 1.0 to 5.0 dB/cm at wavelengths between 980-1650 nm. The limiter also includes collimating fibers mounted on the input and output ends to minimize low power signal losses across the limiter body. It may be installed at a junction between two optical fibers and is preferably formed from a curable adhesive having the aforementioned negative thermal index coefficient to obviate the need for separate bonding materials and joining steps during the installation of the limiter.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: July 2, 2002
    Assignee: Corning Incorporated
    Inventors: Michael E. DeRosa, Stephen J. Caracci, Dana C. Bookbinder, Thomas M. Leslie, Stephan L. Logunov
  • Patent number: 6411751
    Abstract: Signal losses in an optical cross-connect having steerable switching elements for routing optical signals are substantially reduced by controllably and selectively training the steerable switching elements as a function of measured input and output power of a cross-connected optical signal. More specifically, adjustments to the alignment of one or more steerable switching elements associated with a particular cross-connection are performed in a non-intrusive manner to increase the optical signal power in an optical signal while maintaining an active cross-connection of the optical signal. In one illustrative embodiment, optical monitoring arrangements monitor the optical signal power of optical signals coupled to the cross-connect inputs and outputs. The cross-connect includes a switching fabric comprising a plurality of steerable MEMS mirror elements used as switching elements for controllably and selectively directing the light beams within the cross-connect.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: June 25, 2002
    Assignees: Lucent Technologies Inc., Agere Systems Guardian Corp.
    Inventors: Randy Clinton Giles, Albert M Gottlieb, David Thomas Neilson
  • Patent number: 6400864
    Abstract: A semiconductor optical amplifier module comprises: a demultiplexer made of a semiconductor material to separate an optical input signal containing a plurality of wavelength components into a plurality of demultiplexed signals, each of the demultiplexed signals having a different one of the wavelength component; a plurality of semiconductor optical amplifiers each optically coupled to the demultiplexer to amplify a corresponding one of the demultiplexed signals; and a multiplexer made of the semiconductor material and optically coupled to the plurality of semiconductor optical amplifiers to combine the demultiplexed signals amplified by the semiconductor optical amplifiers to produce a multiplexed signal. The demultiplexer, the semiconductor amplifiers and the multiplexer are integrated on a single semiconductor substrate.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: June 4, 2002
    Assignee: Hitachi, Ltd.
    Inventor: Youngkun Lee
  • Patent number: 6400872
    Abstract: For the trimming of an arrayed waveguide grating (1) of an integrated optical multi-beam interferometer which is comprised of a large number (N) of waveguides (i) at least one (j) of these waveguides (i) is treated over a region (Bj) along its optical path length (Lj) only by irradiation which changes its core refractive index (nj) A defined phase shift (&Dgr;&phgr;j) of the light signal guided in this waveguide (j) results thereby which leads to a long-lasting correction of the aberration of the interference pattern in the multi-beam interferometer.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: June 4, 2002
    Assignee: Alcatel
    Inventor: Jörg Gehler
  • Patent number: 6396988
    Abstract: The present invention provides an optical waveguide device having a bottom cladding layer, a core and a top cladding layer, wherein a first submerge-preventing silica-based layer is further provided over the bottom cladding layer and under the core, and the first submerge-preventing silica-based layer is doped with at least one dopant and the first submerge-preventing silica-based layer is higher in softening temperature than the top cladding layer.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: May 28, 2002
    Assignee: NEC Corporation
    Inventor: Tsuyoshi Shimoda
  • Patent number: 6393187
    Abstract: In accordance with the invention, an optical fiber array comprises a substrate providing a planar array of optical fibers. The optical fibers are parallel to an array axis, but the fiber ends present smooth, polished surfaces angled from the array axis to minimize return loss of light directed along the axis. Three embodiments are described. The first is a series of 1×n strip arrays each mounted at an angle to the array axis to form a saw tooth configuration faceplate. The holes in each strip are also angled to compensate for the angled mount. A second embodiment uses an angled planar faceplate having tapered holes. A third embodiment uses an angled faceplate planar with double-tapered holes to obtain the angled end surfaces. In each embodiment, the fiber ends are substantially coplanar with the faceplate surface but the ends are angled with respect to the array axis.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: May 21, 2002
    Assignees: Lucent Technologies, Agere Systems Guardian Corp.
    Inventors: Jon W. Engelberth, John David Weld