Patents Examined by Stanetta D Isaac
  • Patent number: 11676956
    Abstract: Provided is a technique suitable for multilayering thin semiconductor elements via adhesive bonding while avoiding wafer damage in a method of manufacturing a semiconductor device, the method in which semiconductor elements are multilayered through laminating wafers in which the semiconductor elements are fabricated. The method of the present invention includes bonding and removing. In the bonding step, a back surface 1b side of a thinned wafer 1T in a reinforced wafer 1R having a laminated structure including a supporting substrate S, a temporary adhesive layer 2, and the thinned wafer 1T is bonded via an adhesive to an element forming surface 3a of a wafer 3. A temporary adhesive for forming the temporary adhesive layer 2 contains a polyvalent vinyl ether compound, a compound having two or more hydroxy groups or carboxy groups and thus capable of forming a polymer with the polyvalent vinyl ether compound, and a thermoplastic resin.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 13, 2023
    Assignee: DAICEL CORPORATION
    Inventor: Naoko Tsuji
  • Patent number: 11676937
    Abstract: An apparatus having a seal plate which includes rigid hard portions and one or more flexible soft portions located between the hard portions is used for bonding at least one semiconductor device onto a substrate that is supported on a platform. The seal plate is movable between a first position which is spaced from the substrate and a second position whereat a first side of the seal plate is configured to be in contact with the substrate. A diaphragm covers a second side of the seal plate opposite to the first side. A fluid pressure generator exerts a fluid pressure onto the diaphragm to actuate the diaphragm to compress the one or more soft portions to transmit a bonding force onto the at least one semiconductor device during bonding.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: June 13, 2023
    Assignee: ASMPT SINGAPORE PTE. LTD.
    Inventors: Jiapei Ding, Rolan Ocuaman Camba, Teng Hock Kuah, Jian Liao, Kar Weng Yan
  • Patent number: 11676969
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor wafer. The semiconductor wafer comprises a handle wafer. A first oxide layer is disposed over the handle wafer. A device layer is disposed over the first oxide layer. A second oxide layer is disposed between the first oxide layer and the device layer, wherein the first oxide layer has a first etch rate for an etch process and the second oxide layer has a second etch rate for the etch process, and wherein the second etch rate is greater than the first etch rate.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Liang Liu, Yeur-Luen Tu
  • Patent number: 11670732
    Abstract: A device for detecting a chemical species, including a Geiger-mode avalanche diode, which includes a body of semiconductor material delimited by a front surface. The semiconductor body includes: a cathode region having a first type of conductivity, which forms the front surface; and an anode region having a second type of conductivity, which extends in the cathode region starting from the front surface. The detection device further includes: a sensitive structure arranged on the anode region and including at least one sensitive region, which has an electrical permittivity that depends upon the concentration of the chemical species; and a resistive region, arranged on the sensitive structure and electrically coupled to the anode region.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: June 6, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Giovanni Condorelli
  • Patent number: 11670537
    Abstract: A method of manufacturing a semiconductor device, which has buried gate electrodes, includes: forming a plurality of gate trenches in a substrate having a plurality of active regions defined by a device isolation film, the plurality of gate trenches crossing the plurality of active regions and extending parallel to each other in a first horizontal direction; selectively forming a first gate insulating layer on an exposed surface of the substrate; forming a second gate insulating layer on exposed surfaces of both the first gate insulating layer and the device isolation film; and forming a plurality of gate insulating layers by partially removing the first gate insulating layer and the second gate insulating layer, and forming a plurality of buried gate electrodes.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: June 6, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung-jae Kang, Yun-jung Kim, Se-min Yang, Ki-bum Lee
  • Patent number: 11670538
    Abstract: A method for manufacturing logic device isolation in an embedded storage process, removing the pad silicon nitride and floating gate polysilicon layer in a shallow trench isolation area and retaining the floating gate oxide layer; depositing acid etching silicon nitride; removing the acid etching silicon nitride at the bottom of the shallow trench isolation and a portion of the silicon substrate adjacent to and under the shallow trench isolation, to form a trench and retain the acid etching silicon nitride on a side of the floating gate polysilicon layer close to the shallow trench isolation; remove the acid etching silicon nitride on the side of the floating gate polysilicon layer close to the shallow trench isolation.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: June 6, 2023
    Assignee: Hua Hong Semiconductor (Wuxi) Limited
    Inventor: Junwen Liu
  • Patent number: 11664279
    Abstract: A method includes forming a first gate dielectric, a second gate dielectric, and a third gate dielectric over a first semiconductor region, a second semiconductor region, and a third semiconductor region, respectively. The method further includes depositing a first lanthanum-containing layer overlapping the first gate dielectric, and depositing a second lanthanum-containing layer overlapping the second gate dielectric. The second lanthanum-containing layer is thinner than the first lanthanum-containing layer. An anneal process is then performed to drive lanthanum in the first lanthanum-containing layer and the second lanthanum-containing layer into the first gate dielectric and the second gate dielectric, respectively. During the anneal process, the third gate dielectric is free from lanthanum-containing layers thereon.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Hung Huang, Kuo-Feng Yu, Jian-Hao Chen, Shan-Mei Liao, Jer-Fu Wang, Yung-Hsiang Chan
  • Patent number: 11664452
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Pratik A. Patel, Mark Y. Liu, Jami A. Wiedemer, Paul A. Packan
  • Patent number: 11658108
    Abstract: A power semiconductor device including a first and second die, each including a plurality of conductive contact regions and a passivation region including a number of projecting dielectric regions and a number of windows. Adjacent windows are separated by a corresponding projecting dielectric region with each conductive contact region arranged within a corresponding window. A package of the surface mount type houses the first and second dice. The package includes a first bottom insulation multilayer and a second bottom insulation multilayer carrying, respectively, the first and second dice. A covering metal layer is arranged on top of the first and second dice and includes projecting metal regions extending into the windows to couple electrically with corresponding conductive contact regions. The covering metal layer moreover forms a number of cavities, which are interposed between the projecting metal regions so as to overlie corresponding projecting dielectric regions.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: May 23, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Cristiano Gianluca Stella, Agatino Minotti
  • Patent number: 11646328
    Abstract: An imaging device including a semiconductor substrate; a first pixel including a first photoelectric converter configured to convert incident light into charge, and a first diffusion region in the semiconductor substrate, configured to electrically connected to the first photoelectric converter and a second pixel including a second photoelectric converter, configured to convert incident light into charge, and a second diffusion region in the semiconductor substrate, configured to electrically connected to the second photoelectric converter, wherein an area of the first photoelectric converter is greater than an area of the second photoelectric converter in a plan view, both the first diffusion region and the second diffusion region overlap with the first photoelectric converter in the plan view, and neither the first diffusion region nor the second diffusion region overlaps with the second photoelectric converter in the plan view.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 9, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kyosuke Kobinata, Sanshiro Shishido, Yoshihiro Sato
  • Patent number: 11646304
    Abstract: Provided is a technique suitable for multilayering thin semiconductor elements via adhesive bonding while avoiding wafer damage in a method of manufacturing a semiconductor device, the method in which semiconductor elements are multilayered through laminating wafers in which the semiconductor elements are fabricated. The method of the present invention includes bonding and removing. In the bonding step, a back surface 1b side of a thinned wafer 1T in a reinforced wafer 1R having a laminated structure including a supporting substrate S, a temporary adhesive layer 2, and the thinned wafer 1T is bonded via an adhesive to an element forming surface 3a of a wafer 3. A temporary adhesive for forming the temporary adhesive layer 2 contains a polyvalent vinyl ether compound, a compound having two or more hydroxy groups or carboxy groups and thus capable of forming a polymer with the polyvalent vinyl ether compound, and a thermoplastic resin.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: May 9, 2023
    Assignee: DAICEL CORPORATION
    Inventor: Naoko Tsuji
  • Patent number: 11647626
    Abstract: The present application discloses a method for fabricating a semiconductor device with a tapering impurity region. The method includes providing a substrate; forming a word line structure in the substrate; performing an isotropic etch process to form a first recess in the substrate, wherein the first recess comprises tapering sidewalls; performing an anisotropic etch process to expand the first recess and form a second recess below the first recess; and forming an impurity region in the first recess and in the second recess and adjacent to the word line structure.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: May 9, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11640923
    Abstract: The present application provides a method for manufacturing FDSOI devices. The method includes steps of: providing a semiconductor structure which comprises a silicon substrate, a buried oxide layer on the silicon substrate, a silicon-on-insulator layer on the buried oxide layer; and a hard mask layer on the silicon-on-insulator layer; performing spin coating of a photoresist on the hard mask layer to form a bulk silicon region; performing plasma anisotropic etching on the bulk silicon region to open a part of the buried oxide layer, and then performing isotropic etching, so that the silicon-on-insulator layer shrinks in the horizontal direction; performing plasma anisotropic etching to etch through the buried oxide layer to form a bulk silicon region trench; performing silicon epitaxial growth in the bulk silicon region trench.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 2, 2023
    Assignee: SHANGHAI HUALI INTEGRATED CIRCUIT CORPORATION
    Inventors: Tianpeng Guan, Jianghua Leng, Zhonghua Li, Yufeng Chen, Nan Li, Ming Tian
  • Patent number: 11631655
    Abstract: The present application discloses a method for fabricating a semiconductor device with a connection structure. The method includes providing a first semiconductor structure comprising a plurality of first conductive features adjacent to a top surface of the first semiconductor structure; forming a connection structure comprising a connection insulating layer on the top surface of the first semiconductor structure, a connection layer in the connection insulating layer, and a plurality of first porous interlayers on the plurality of first conductive features and in the connection insulating layer; and forming a second semiconductor structure comprising a plurality of second conductive features on the plurality of first porous interlayers.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 18, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11626337
    Abstract: In one example, a semiconductor device comprises a main substrate comprising a first side and a main conductive structure, and a first component module over the first side of the main substrate. The first component module comprises a first electronic component and a first module encapsulant contacting a lateral side of the first electronic component. The semiconductor device further comprises a second component module over the first side of the main substrate. The second component module comprises a second electronic component and a second module encapsulant contacting a lateral side of the second electronic component. The semiconductor device further comprises a main encapsulant over a first side of the main substrate and between the first component module and the second component module. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: April 11, 2023
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventor: Cheol Ho Lee
  • Patent number: 11626317
    Abstract: A semiconductor device has a first trench and a second trench of a trench structure located in a substrate. The second trench is separated from the first trench by a trench space that is less than a first trench width of the first trench and less than a second trench width of the second trench. The trench structure includes a doped sheath having a first conductivity type, contacting and laterally surrounding the first trench and the second trench. The doped sheath extends from the top surface to an isolation layer and from the first trench to the second trench across the trench space. The semiconductor device includes a first region and a second region, both located in the semiconductor layer, having a second, opposite, conductivity type. The first region and the second region are separated by the first trench, the second trench, and the doped sheath.
    Type: Grant
    Filed: October 24, 2020
    Date of Patent: April 11, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Binghua Hu, Ye Shao, John K Arch
  • Patent number: 11626301
    Abstract: A method for manufacturing a semiconductor element includes: providing a wafer comprising first and second regions at an upper surface of the wafer, the second region being located at a periphery of the first region and being at a lower position than the first region; and forming a semiconductor layer made of a nitride semiconductor at the upper surface of the wafer. In a top-view, the first region comprises an extension portion at an end portion of the first region in a first direction that passes through the center of the wafer parallel to an m-axis of the semiconductor layer, the extension portion extending in a direction from a center of the wafer toward an edge of the wafer or in a direction from an edge of the wafer toward a center of the wafer.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: April 11, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Haruhiko Nishikage, Yoshinori Miyamoto, Yasunobu Hosokawa
  • Patent number: 11616040
    Abstract: Semiconductor dies including ultra-thin wafer backmetal systems, microelectronic devices containing such semiconductor dies, and associated fabrication methods are disclosed. In one embodiment, a method for processing a device wafer includes obtaining a device wafer having a wafer frontside and a wafer backside opposite the wafer frontside. A wafer-level gold-based ohmic bond layer, which has a first average grain size and which is predominately composed of gold, by weight, is sputter deposited onto the wafer backside. An electroplating process is utilized to deposit a wafer-level silicon ingress-resistant plated layer over the wafer-level Au-based ohmic bond layer, while imparting the plated layer with a second average grain size exceeding the first average grain size. The device wafer is singulated to separate the device wafer into a plurality of semiconductor die each having a die frontside, an Au-based ohmic bond layer, and a silicon ingress-resistant plated layer.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: March 28, 2023
    Assignee: NXP USA, Inc.
    Inventors: Tianwei Sun, Jaynal A. Molla
  • Patent number: 11615981
    Abstract: According to one embodiment, an isolator includes first and second conductive members, and first second, and third insulating members. The first conductive member includes first, second, and third partial regions. The third partial region is between the first and second partial regions. The second conductive member is electrically connected to the first conductive member. The second conductive member includes fourth and fifth partial regions. The fourth partial region is between the third and fifth partial regions. The first insulating member includes first and second insulating regions. The fifth partial region is between the first and second insulating regions. The second insulating member includes third and fourth insulating regions. The fourth partial region is between the third and fourth insulating regions. The third insulating member includes first and second portions.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: March 28, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Tatsuhiro Oda, Tatsuya Ohguro
  • Patent number: 11605877
    Abstract: A semiconductor device package includes a glass carrier, a package body, a first circuit layer and a first antenna layer. The glass carrier has a first surface and a second surface opposite to the first surface. The package body is disposed on the first surface of the glass carrier. The package body has an interconnection structure penetrating the package body. The first circuit layer is disposed on the package body. The first circuit layer has a redistribution layer (RDL) electrically connected to the interconnection structure of the package body. The first antenna layer is disposed on the second surface of the glass carrier.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: March 14, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Sheng-Chi Hsieh, Chen-Chao Wang, Teck-Chong Lee, Chien-Hua Chen