Patents Examined by Stanley S. Silverman
  • Patent number: 6966941
    Abstract: An apparatus and method for treating organic waste sludge such as sewage sludge is disclosed wherein the sludge is first dewatered, moved to a day hopper for storage, and then successively passed through first and second reactors. As the sludge is passed through the first reactor, in a continuous fashion, the sludge and acid are thoroughly mixed and has the pH thereof substantially lowered due to the addition of acid in the first reactor. The sludge is then moved through the second reactor where the sludge is subjected to a base material to substantially raise the pH thereof. The treated sludge is then pumped from the second reactor to a pugmill and then to a dryer which dries the material. The dried material is then suitable for use as a fertilizer.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: November 22, 2005
    Assignee: BER Systems, Inc.
    Inventors: Marius Grobler, John A. Bewsey, Oliver O. Hart
  • Patent number: 6967013
    Abstract: A process for producing aligned carbon nanotube films, wherein a carbon compound is decomposed using a substrate that is coated with an element having no catalytic ability by itself and which loads a metallic element having catalytic ability or a compound thereof, thereby forming a film of fine carbon nanotubes on the surface of the substrate which are aligned in a direction perpendicular to the substrate.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: November 22, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Masao Someya, Takashi Fujii, Masukazu Hirata, Shigeo Horiuchi
  • Patent number: 6964729
    Abstract: An improved method and apparatus for oxidizing undesired compounds residing within a liquid glycol based absorbent wherein the compounds are heated within a reboiler chamber to their boiling point to effectuate production of vaporized effluents. The absorbent's vaporized effluents rise upwardly exiting the reboiler chamber and enter a reflux tower wherein they are partially condensed via a condenser embodied within the interior of the tower. The residual uncondensed effluents are then transported to and first heated via a vaporizer/heat exchanger, thus effectuating the vaporization of any ambient condensed liquids contained within the effluents. The revaporized effluents then enter the invention's thermal oxidizer combustion chamber where they are second heated to a temperature necessary to effectuate destruction of undesirable compounds, such as but not limited to benzene, toluene and xylene.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: November 15, 2005
    Inventor: Parviz Khosrowyar
  • Patent number: 6964756
    Abstract: High-surface-area alumina honeycombs are subjected to a water vapor pre-treatment to obtain protection from cracking damage on subsequent exposure to aqueous media e.g., aqueous solutions for depositing catalysts on the honeycombs.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: November 15, 2005
    Assignee: Corning Incorporated
    Inventors: William P. Addiego, Kevin R. Brundage, Christopher R. Glose, Jennifer M. Torns
  • Patent number: 6964755
    Abstract: A high activity catalyst is obtained by oxidizing and modifying the surface of zinc sulfide by hydrogen peroxide. An oxidation treatment is carried out in basic aqueous solution. The high activity photocatalyst is added to the basic aqueous solution in which hydrogen sulfide is dissolved to recover hydrogen and sulfur under low energy. Thus, the inexpensive high activity photocatalyst having a high catalytic activity and a long duration of life is realized and hydrogen gas is efficiently generated under little energy.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: November 15, 2005
    Assignee: Japan Science And Technology Agency
    Inventors: Kazuyuki Tohji, Atsuo Kasuya
  • Patent number: 6962679
    Abstract: There are disclosed various processes, apparatuses and systems for treating a halogen-containing gas such as F2 that involve generating a plasma in order to reduce chemically the halogen-containing gas into products that are more environmentally manageable. According to a particular embodiment, a reducing agent is mixed with the halogen-containing gas to produce a feed gas mixture and a non-thermal plasma is generated in the feed gas mixture in the presence of liquid water.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: November 8, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Gary B. Josephson, Delbert L. Lessor, Amit K. Sharma, Christopher Lyle Aardahl, Kenneth G. Rappe
  • Patent number: 6962681
    Abstract: Systems and apparatus for increasing combustion efficiency during combustion of a carbon-containing fuel such as a fossil fuel. The systems and apparatus utilize catalytically reactive particles within a reaction chamber, typically silica or alumina, that interact with waste exhaust gases produced during combustion of the fuel in order to produce a degrading atmosphere of hydroxy radicals or other reactive species. The degrading atmosphere apparently migrates to the source of combustion and increases the efficiency of combustion as evidenced by the reduction or elimination of soot and other pollutants normally produced. Typically, the reaction chamber is maintained at a temperature in a range from about 30° C. to about 600° C. Moisture is provided by the waste exhaust gases in order to catalyze formation of hydroxyl radicals by the catalytically reactive particles.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: November 8, 2005
    Assignee: Maganas Oh Radicals, Inc.
    Inventors: Thomas C. Maganas, Alan L. Harrington
  • Patent number: 6960335
    Abstract: Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5<x<1.33, 0?y?0.5 and have an average primary particle diameter from 5 nm to 300 nm, preferably between 5 and 100 nm, and M is at least one cation dopant. The powders can be formed into active cathode materials in Li-ion and Li rechargeable batteries.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: November 1, 2005
    Assignee: Nanopowder Enterprises Inc
    Inventors: Amit Singhal, Ganesh Skandan
  • Patent number: 6960701
    Abstract: A process for the destruction of vesicants, nerve agents, and related chemical compounds is described. Blister-type chemical agents such as lewisite and mustards, as well as G or V Class nerve agents and phosphorus-containing pesticides, are reacted with a neutralent solution of a persulfate, preferably potassium peroxymonosulfate, and a peroxide, preferably hydrogen peroxide, at temperatures ranging from ambient to boiling for a time sufficient to reduce the residual agent concentration to levels acceptable for disposal in a routine manner.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: November 1, 2005
    Assignee: EAI Corporation
    Inventor: Kevin M. Morrissey
  • Patent number: 6960330
    Abstract: Certain exemplary compositions, methods, and systems are disclosed that can be useful for reducing a concentration of a contaminant associated with a medium, which can be any substance or material, such as soil, water, air, and/or fluid. In one exemplary method, the medium is treated with Fe-MGDA and an oxidizing agent in amounts effective to oxidize at least a portion of the contaminant. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: November 1, 2005
    Inventor: Henry Wilmore Cox, Jr.
  • Patent number: 6960329
    Abstract: A method of removing mercury from flue gas containing mercury and particulate solids emanating from a fossil-fuel energy conversion plant and passing through a flue gas duct. The method includes (a) contacting the mercury in the flue gas with a solution containing at least one chloride-containing salt dissolved in a solvent by injecting the solution into the flue gas duct at an injection location, in order to oxidize mercury into HgCl2, (b) heating the solution prior to or after step (a) to at least about 300° C., and (c) removing oxidized mercury from the flue gas with a device for removing particulate solids from the flue gas.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 1, 2005
    Assignee: Foster Wheeler Energy Corporation
    Inventor: Kumar Muthusami Sellakumar
  • Patent number: 6960334
    Abstract: Straight, nano-scale-order amorphous carbon tubes having a long-term stable ability for storing various kinds of gases and being stable in shape, and a novel process for producing said carbon tubes with high purity, high yield and high mass-productivity are provided. The amorphous nano-scale carbon tubes are prepared by subjecting a heat-decomposable resin having a decomposition temperature of 200 to 900° C. to an excitation treatment in the presence of a metal powder and/or a metal salt, or by subjecting a carbon material containing —C?C— and/or ?C? to a heat-treatment at 3000° C. or lower.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: November 1, 2005
    Assignee: Osaka Gas Company Limited
    Inventors: Hisaji Matsui, Ryoichi Nishida, Hitoshi Nishino, Chiharu Yamaguchi, Haruyuki Nakaoka, Kazuhiro Takezaki, Katsuhiro Sasaki
  • Patent number: 6958407
    Abstract: A phenyl ester is produced by allowing benzene, a carboxylic acid and molecular oxygen to react with each other in the presence of a catalyst comprising (A) palladium, (B) at least one element selected from elements of groups 13, 14, 15, and 16 and the fourth to sixth periods of the periodic table, and (C) at least one element selected from elements of groups 3, 4 and lanthanoid elements of the periodic table. Preferably, element (B) is selected from elements of group 16 and the fourth to sixth periods of the periodic table, and element (C) is contained in a metal oxide form in the catalyst. The catalytic activity can be maintained at a high level, and a phenyl ester is stably produced. The phenyl ester can be converted to phenol by a conventional procedure.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: October 25, 2005
    Assignee: Tosoh Corporation
    Inventors: Yoshihiko Mori, Takao Doi, Tetsuo Asakawa, Takanori Miyake
  • Patent number: 6958136
    Abstract: The present invention is directed to a process for treating, reducing, and/or stabilizing various wastes or flue gases. In one embodiment, the process is directed to treatment of alkali bearing wastes that include nitrate and/or nitrite-rich wastes. Optionally, the disclosed method can be utilized for treatment of hazardous wastes, including radioactive hazardous waste compounds. In general, the present invention includes processing a waste or gaseous stream with the addition of suitable carbon-containing additives to treat and reduce nitrogen-containing compounds in the waste. Additives may be gaseous, liquid or solid reduction-promoting agents, catalysts, and the like. The reaction products obtained from the process of the invention include mainly alkali carbonate, nitrogen, hydrogen, carbon monoxide and carbon dioxide.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 25, 2005
    Assignee: Manufacturing and Technology Conversion International, Inc.
    Inventors: Ravi Chandran, Momtaz N. Mansour
  • Patent number: 6958304
    Abstract: A process for the regeneration of a zeolite catalyst which comprises treating the catalyst thermally in the presence of a gas stream at temperatures above 120° C., the weight-based residence time of the gas stream over the catalyst during the thermal treatment being greater than 2 hours.
    Type: Grant
    Filed: September 11, 2001
    Date of Patent: October 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Joaquim Henrique Teles, Alwin Rehfinger, Peter Bassler, Anne Wenzel, Norbert Rieber, Ulrich Müller, Peter Rudolf
  • Patent number: 6955794
    Abstract: A plasma reactor including a first dielectric having at least one slot defined therethrough, and a segmented electrode including a plurality of electrode segments, each electrode segment is disposed proximate an associated slot. Each electrode segment may be formed in different shapes, for example, a plate, bar, rim, or plug. The electrode segment may be hollow, solid, or made from a porous material. The reactor may include a second electrode and dielectric with the first and second dielectrics separated by a predetermined distance to form a channel therebetween into which the plasma exiting from the slots defined in the first dielectric is discharged. The fluid to be treated is passed through the channel and exposed to the plasma discharge. If the electrode segment is hollow or made of a porous material, then the fluid/gas to be treated may be fed into the slots defined in the first dielectric and exposed therein to the maximum plasma density.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: October 18, 2005
    Assignee: Plasmasol Corporation
    Inventors: Edward J. Houston, Jr., Kurt Kovach, Richard Crowe, Seth Tropper, Michael Epstein
  • Patent number: 6955638
    Abstract: A process for disposing of solvent-containing liquids so that they do not contaminate ground water. An absorbent blend is mixed into a water-containing solvent mixture at the rate of about 1 lb. of blend per gallon of liquid. The blend is made up of a swellable polymer, consisting of polyacrylamide/polyacrylate co-polymer salt or poly 2-propenamide-co-2-propenoic acid homopolymer salt which swells and absorbs liquid. The blend also contains a mixture of solid absorbents. The resulting mixture is stirred in the container until it becomes thick and then it is allowed to set to provide a disposable modeling clay-like solid. The resulting solid material, after curing, may be then simply added to solid trash, and thus, be freed from contaminating ground water.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: October 18, 2005
    Inventors: Don C. Atkins, Steven H. Bortz
  • Patent number: 6955801
    Abstract: A step (1) of heating a fluoronickel compound to release a fluorine gas, a step (2) of allowing a fluorine gas to be occluded into a fluorinated compound, and a step (3) of heating the fluoronickel compound and reducing an inner pressure are conducted in a container, respectively, at least once, and thereafter a high-purity fluorine gas is obtained in the step (1). Also, a step (5) of heating a fluoronickel compound and reducing an inner pressure and a step (6) of allowing a fluorine gas reduced in a hydrogen fluoride content to be occluded into the fluoronickel compound are conducted in a container having a fluorinated layer formed on its surface, respectively, at least once, the step (5) is further conducted, and thereafter a fluorine gas containing impurity gases is contacted with the fluoronickel compound to fix and remove the fluorine gas, and the impurities are analyzed by gas chromatography.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: October 18, 2005
    Assignee: Showa Denka K.K.
    Inventors: Junichi Torisu, Hitoshi Atobe, Yasuyuki Hoshino
  • Patent number: 6956012
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: October 18, 2005
    Assignee: UT-Battelle, LLC
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Patent number: 6957093
    Abstract: A structural arrangement of superconducting composites is provided to protect their superconductivity in such a way that these composites are electrically connected in a certain manner. The invention may be practiced with any desired superconducting material, and bismuth based superconducting materials are preferred. The shape and size of the superconducting composites may vary.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: October 18, 2005
    Assignee: Innova Superconductor Technology Co., Ltd.
    Inventor: Zhenghe Han