Patents Examined by T. H. Tubbesing
  • Patent number: 5177488
    Abstract: A programmable fiber optic delay system employs multiple programmable fiber optic delay lines, and switches among the delay lines for inclusion in an overall delay path. Switching among the delay lines is coordinated with the programming of those lines so that only a delay line with a settled delay program is included in the overall delay path. Each delay line consists of a plurality of fiber optic segments of varying length. The line's delay is programmed by switching in particular segments whose aggregate lengths correspond to a desired delay period. The multiple delay lines are used to simulate target speed and distance for use in testing a radar system. The programming of each individual delay line and the switching between lines is preferably controlled by a computer resident in the target simulator.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: January 5, 1993
    Assignee: Hughes Aircraft Company
    Inventors: Harry T. Wang, Irwin L. Newberg, Adrian E. Popa, Robert R. Hayes, John K. Keigharn, Bill H. Otoide
  • Patent number: 5175553
    Abstract: A telemetric process for measuring short distances comprises emitting an electromagnetic signal modulated by a pseudo-random sequence having a number (n) of bits delivered at a clock frequency (fH), correlating the echo detected with the modulated signal time-delayed by known means, and varying the clock frequency, as a function of the correlation measurement, within an operational field divided into a plurality of operating ranges, the number of bits inthe pseudo-random sequence being modified accoridng to the operating range of the clock frequency. The process is particlualry useful for proximity measurement close to a reflecting surface.
    Type: Grant
    Filed: September 12, 1991
    Date of Patent: December 29, 1992
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A."
    Inventor: Guy Le Garrec
  • Patent number: 5175554
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic countermeasures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 29, 1992
    Assignee: Raytheon Company
    Inventors: Rosario Mangiapane, Arthur Crain
  • Patent number: 5175551
    Abstract: A weather surveillance apparatus utilizes a set of beams in an elevation angular sector, one beam being offset from the other by a predetermined offset angle. Radar signal returns in each beam are processed to establish an average doppler frequency shift for the signals in the respective beams. An average of the averages and a difference of the averages are determined which are utilized to establish horizontal and vertical wind velocities. These velocities are further processed to determine whether a microburst precursor exists and the location, magnitude, time to impact, and track of any resulting windshear.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: December 29, 1992
    Assignee: Unisys Corporation
    Inventor: William L. Rubin
  • Patent number: 5173700
    Abstract: A monopulse radar system includes sum and difference receivers, and an auxiliary receive beam offset from the sum and difference beam axis. The received sum and difference signals are processed to produce first and second weighting signals which, when multiplied by the auxiliary signal, produce first and second weighted auxiliary signals which are approximately equal to the magnitude of, and are in a particular phase with, the received sum and difference signals, respectively. In the presence of a jamming signal in the main lobe of the monopulse receiver, the weighted auxiliary signals are summed with the sum and difference signals to produce adapted sum and difference signals, in which the jammer signal is suppressed by a null in the effective receive antenna pattern. The null perturbs the sum and difference patterns, so that the ratios of the sum and difference signals no longer accurately represent the off-axis angle of the target.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: December 22, 1992
    Assignee: General Electric Co.
    Inventor: Donald E. Chesley
  • Patent number: 5173707
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic countermeasures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 22, 1992
    Assignee: Raytheon Company
    Inventors: Rosario Mangiapane, Theodore J. Peregrim, Arthur Crain, Gordon L. Kettering, Ken W. Chang
  • Patent number: 5172118
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic counter-measures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 15, 1992
    Assignee: Raytheon Company
    Inventors: Theodore J. Peregrim, Rosario Mangiapane, George W. Ogar
  • Patent number: 5172125
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic counter-measures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for randome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 15, 1992
    Assignee: Raytheon Company
    Inventors: Theodore J. Peregrim, Rosario Mangiapane, Arthur Crain, Gerald A. Bonta
  • Patent number: 5172122
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic countermeasures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 15, 1992
    Assignee: Raytheon Company
    Inventors: Theodore J. Peregrim, Rosario Mangiapane, Arthur Crain
  • Patent number: 5172119
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic counter measures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 15, 1992
    Assignee: Raytheon Company
    Inventors: Benjamin L. Young, Arthur Crain, Gerald A. Bonta, Frank A. Okurowski, Gordon L. Kettering, Theodore J. Peregrim, Rosario Mangiapane
  • Patent number: 5172120
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic countermeasures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome of a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: December 15, 1992
    Assignee: Raytheon Company
    Inventors: Nathan Slawsby, Theodore J. Peregrim, Richard B. Watson, Jr., Edward J. Sheldon
  • Patent number: 5166691
    Abstract: A versatile, reconfigurable automated radar test system. The invention (200) includes a system controller (212) for providing a plurality of digital control signals. Circuitry (232, 234, 236) is provided for converting the digital control signals to static analog and digital test signals. In addition, a function generator (240) is included for generating a plurality of dynamic analog and digital test signals. An interfacing arrangement (239, 242) is included for applying the static and dynamic analog and digital test signals to a module (12) of a radar system (10) under test.
    Type: Grant
    Filed: October 15, 1991
    Date of Patent: November 24, 1992
    Assignee: Hughes Aircraft Company
    Inventors: Moshing P. Chin, Douglas N. Schwartz
  • Patent number: 5166690
    Abstract: A multibeam phased array radar includes identical N:1 equal-split combiners and overlay hybrid couplers which form multiple tapered and weighted beams. The radar is configured with a single transmit/receive (T/R) module for each antenna element. The T/R modules contain a high power amplifier for transmit, low noise amplifier for receive, phase shifter for beam steering and attenuator for overall weighting. Each T/R module is connected to an unequal-split coupler which divides the received signal into signals of different amplitudes. Each of these signals are fed into a separate N:1 equal-split combiner, thereby forming separate beams. The illumination taper of each beam is determined by the coupling values of the couplers and the setting of the T/R module attenuator. There is disclosed a first embodiment including two beamformers and a second embodiment extending the concept to more than two beamformers.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: November 24, 1992
    Assignee: Raytheon Company
    Inventors: Thomas F. Carlson, Alan J. Glickman
  • Patent number: 5164731
    Abstract: The present invention is a radar system that detects turbulence by breaking a range cell return down into spectral segments using an FFT processor. The standard deviation of the spectrum is determined and the system compares that standard deviation to a reference threshold of a non-turbulent return if the signal is above noise. If the threshold is exceeded, the range cell is marked for turbulence display. Once the turbulence display is completed it is overlayed on the weather display. To improve matching of the feature size to the variance calculation the invention performs both range and azimuth post detection integration subsequent to the FFT but before variance calculation.
    Type: Grant
    Filed: June 13, 1991
    Date of Patent: November 17, 1992
    Assignee: Westinghouse Electric Corp.
    Inventors: Scott C. Borden, Bruce D. Mathews, Joseph Stevenson
  • Patent number: 5164734
    Abstract: An active radar target device is disclosed. This device contains a means receiving a radar signal, a means for decreasing the frequency of the radar signal received, at least one means for delaying the reduced frequency radar signal, means for increasing the frequency of the delayed signal, and means of modulating the delayed signal. The modulated and delayed signal is transmitted to an antenna, from which it may be radiated to a radar detector.
    Type: Grant
    Filed: October 7, 1991
    Date of Patent: November 17, 1992
    Assignee: Duane G. Fredericks
    Inventors: Duane G. Fredericks, Herbert W. Rosebrock
  • Patent number: 5163176
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic counter-measures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: November 10, 1992
    Assignee: Raytheon Company
    Inventors: Leonard R. Flumerfelt, Richard W. Burrier, Gerald L. Warner, Jerome H. Pozgay
  • Patent number: 5160264
    Abstract: A programmable radar target simulator provides microwave signals for testing a missile that is otherwise controlled by such signals when it is deployed. The simulator has the capability for initiating suitable microwave signals at the proper power levels in the fully automatic, semi-automatic, or fully manual modes. A control section and an IF section accept digital commands from an external computer or manual control from switches and thumbwheels on the front panel of the simulator to provide for the automatic and manual control signals respectively. A frequency synthesizer section provides three frequency modulated IF signals and one amplitude modulated coding signal which respectively are fed to the IF section and to the control section. Doppler frequency shifts are extracted and representative signals are provided in both AC and DC forms to a microwave section.
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: November 3, 1992
    Inventors: George A. Banura, Richard L. Noland
  • Patent number: 5157403
    Abstract: A ranging system such as a radar system transmits signal pulses toward a diffuse target, such as an atmospheric disturbance. The echoes are processed by quantizing and by doppler filtering to produce a plurality of frequency components representing the radial velocities of various parts of the disturbance, which components are expected to be contaminated by an unknown amount of noise. The noise value is established by squaring the echo signals to produce power-representative signals. The signal samples are ranked according to amplitude, and one or more of the largest-value samples are discarded to reduce the order of the sample set. A Kolmogorov-Smirnov test statistic is generated and compared with a threshold established by the desired confidence level. If the test statistic exceeds the threshold, the order of the sample set is again reduced, and the test statistic again compared with the threshold.
    Type: Grant
    Filed: October 4, 1991
    Date of Patent: October 20, 1992
    Assignee: General Electric Co.
    Inventor: Harry Urkowitz
  • Patent number: 5153597
    Abstract: An acousto-optical classifier for classifying wide bandwidth signals such as high resolution radar returns of ships or very short pulse length signals of radar emitters. This is accomplished by generating the Fourier transform power spectrum with an acousto-optic cell oriented in the Bragg configuration and a low power coherent light source such as a laser. The power spectrum is detected to provide inputs to a digital classifier.
    Type: Grant
    Filed: December 13, 1976
    Date of Patent: October 6, 1992
    Inventors: Werner G. Hueber, James L. Jernigan
  • Patent number: 5151703
    Abstract: The frequency of a variable frequency oscillator in a pulsed radar is adjusted using samples of an IF signal. An initial frequency adjustment is made using a sample taken during RF transmission. This initial adjustment contains an inaccuracy introduced by the magnetron's activity. An additional adjustment is made using temperature dependent values stored in a memory. Yet another adjustment is made during the radar's receive time using signals reflected by targets.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: September 29, 1992
    Assignee: Allied-Signal Inc.
    Inventor: Mark G. Roos