Patents Examined by Temilade S Rhodes-Vivour
  • Patent number: 10935589
    Abstract: A method for detecting soft faults in a transmission line includes the following steps: acquiring a measurement, called time-domain reflectogram, of a signal characteristic of the reflection of a reference signal previously injected into the line, determining the difference between the time-domain reflectogram and a time-domain reflectogram measured previously for the same line or an identical line of similar characteristics, in order to obtain a corrected time-domain reflectogram, applying a plurality of independent transformations to the corrected time-domain reflectogram in order to obtain a plurality of independent transformed reflectograms, converting the transformed reflectograms into a plurality of mutually independent probabilities of occurrence of a fault, applying a data merging method to the probabilities of occurrence of a fault to deduce therefrom a unified value of the probability of occurrence of a fault.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: March 2, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Wafa Ben Hassen, Julien Mottin, Antoine Dupret, Miguel Gallego Roman, Suzanne Lesecq, Diego Puschini Pascual, Nicolas Ravot, Armando Zanchetta
  • Patent number: 10935574
    Abstract: A probe card assembly is provided as follows. A tile fixing substrate is disposed on a printed circuit board. A plurality of ceramic tiles is detachably attached to the tile fixing substrate. Each of the plurality of ceramic tiles comprises a plurality of probes. A plurality of alignment marks is fixed to the tile fixing substrate.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: March 2, 2021
    Inventors: Gyu Yeol Kim, Yu Kyum Kim, Jae Won Kim
  • Patent number: 10935593
    Abstract: A method, system and computer readable medium for determination of distance to an electrical fault within a device. A signal generator excites the device with an electrical input signal. The device comprises an open circuited electrical transmission line. A frequency domain analyzer analyzes part of the signal reflected from the device for determination of the locations of resonant frequency of the signal within the device. A computer calculates the distance to the fault within the device, based on the resonant frequency. The distance to the fault is one quarter wavelength distance into the device at the resonant frequency. A frequency sweeper sweeps the frequency of the input signal and repeated calculation of the distance to the fault made at a plurality of resonant frequencies during the frequency sweep confirms the distance to the fault by convergence of the result of the repeated calculations to substantially the same location.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 2, 2021
    Assignee: Intel Corporation
    Inventors: Deepak Goyal, Mayue Xie, Sivaseetharaman Pandi
  • Patent number: 10921373
    Abstract: A method of determining an error condition in a magnetic field sensor can include receiving a first bridge signal, the first bridge signal generated by a first full bridge circuit. The method can also include receiving a second bridge signal, the second bridge signal generated by a second full bridge circuit. The method can also include determining a bridge separation from the first bridge signal and the second bridge signal. The method can also include comparing a function of the bridge separation to a threshold value. The method can also include generating an error signal indicative of the error condition or not indicative of the error condition in response to the comparing.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 16, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Jeffrey Eagen, Paul A. David
  • Patent number: 10921348
    Abstract: A modular RF measuring device has a motherboard arranged centrally within the device so as to define a front side and a rear side, the front side and the rear side each comprising module interfaces.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 16, 2021
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Gottfried Holzmann, Heinrich Bichl, Sven Gollon
  • Patent number: 10921156
    Abstract: A rotary encoder may include a magnetic encoder disc having a plurality of magnetic features added to the disc by additive manufacturing distributed over a surface of the encoder disc, wherein the disc is configured for attachment to the end of a rotatable shaft, or a cylindrical metallic encoding feature having a plurality of magnetic features added to the cylindrical encoder by additive manufacturing distributed over the surface of the cylindrical encoding feature, wherein the encoding feature is capable of attachment to an outer diameter of the rotatable shaft. The encoder additionally includes a magnetic sensor positioned adjacent to the end of the rotatable shaft to detect magnetic signals from the magnetic features on the disc and/or positioned over the surface of the rotatable shaft to detect magnetic signals from the magnetic features on the encoding feature.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 16, 2021
    Assignee: Simmonds Precision Products, Inc.
    Inventors: Andrew S. Babel, Jagadeesh Kumar Tangudu
  • Patent number: 10917092
    Abstract: A magnetic field sensor comprises a substrate, a first coil supported by the substrate and configured to carry a first current in a first direction to generate a first magnetic field, and a second coil supported by the substrate and nested within the first coil to form a gap between the first and second coils, the second coil configured to carry a second current in a second, opposite direction to generate a second magnetic field. A plurality of magnetic field sensing elements is configured to detect the first and second magnetic fields. A switching network is coupled to the plurality of magnetic field sensing elements and configured to connect the plurality of magnetic field sensing elements to form a first bridge circuit having a first arrangement of the magnetic field sensing elements and a second bridge circuit having a second arrangement of the magnetic field sensing elements.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 9, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventor: Hernán D. Romero
  • Patent number: 10914807
    Abstract: A point stick module has a sensing device, a rank unit and a signal processing device. The sensing device outputs multiple sensing signals in response to operations done by a user. The rank unit provides a rank signal to represent a rank of the sensing device. The signal processing device is coupled to the sensing device and the rank unit to receive the multiple sensing signals and the rank signal, wherein the signal processing device selects a parameter according to the rank signal.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 9, 2021
    Assignee: Elan Microelectronics Corporation
    Inventor: Chun-Chieh Huang
  • Patent number: 10900810
    Abstract: An electronic equipment has a rotational operation member that can be downsized and has high detection reliability. The electronic equipment includes a rotational operation member, a click mechanism providing a click feeling at each predetermined rotation angle, and a magnetic field generating member. A first magnetic field detecting part detects variation of a first direction-related magnetic field generated by the magnetic field generating member, and a second magnetic field detecting part detects a variation of a second direction-related magnetic field generated by the magnetic field generating member. A rotation amount and a rotation direction of the rotational operation member are calculated based on the variations of the first direction-related magnetic field and the second direction-related magnetic field caused by a change in a positional relation of the first and second magnetic field detecting parts with the magnetic field generating member due to the rotation of the rotational operation member.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: January 26, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Taro Fuchigami, Keita Hirayama
  • Patent number: 10895555
    Abstract: The present invention provides methods and systems for in-line inspection of a pipe using a dynamic pulsed eddy current probe system that includes of a remote computer, a dynamic pulsed eddy current probe, a data acquisition system, and a delivery apparatus used for nondestructive examination of pipelines.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: January 19, 2021
    Assignee: Structural Integrity Associates, Inc.
    Inventors: Kamalu Michael-Stanley Koenig, Owen Michael Malinowski
  • Patent number: 10890683
    Abstract: A sensor assembly for a downhole tool including a tool body and a movable component movably positionable about the tool body is disclosed. The sensor assembly may include a wear sensor and/or a position sensor. The wear sensor may include a core with conductors at various depths to send a signal, whereby, upon wear of the core, a change in the signal at the depth of the wear is detectable. The position sensor may be carried by the movable component, and may be used with references comprising magnets distributed about the tool body. The position sensor includes magnets having polarity responsive to polarity of the references whereby a position of the movable component is determined. The sensor assembly may also include a chassis housing electronics coupled to the position sensor and/or the wear sensor.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: January 12, 2021
    Assignee: National Oilwell DHT, L.P.
    Inventors: Gregory Edward Leuenberger, Aaron E. Schen, Jeries Abujries, Kevin W. Clark, Brandon Epperson, Robert Warner, Jacob Riddel, Brian McCarthy, Alamzeb Hafeez Khan
  • Patent number: 10890548
    Abstract: A resistive gas sensor is provided. The resistive gas sensor includes a sensing circuit and a determination circuit. The sensing circuit senses a gas to generate a detection signal. The determination circuit performs a frequency-division operation on the detection signal by a frequency-division parameter to generate a frequency-division signal, counts a half of a period of the frequency-division signal to generate a half-period count value, and determines concentration of the gas according to the half-period count value. The determination circuit determines the frequency-division parameter according to the half-period count value.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 12, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ying-Che Lo, Yu-Sheng Lin, Ting-Hao Hsiao
  • Patent number: 10884030
    Abstract: In an object of the present invention, an object is to provide a technique for achieving higher accuracy in current detection of a radio frequency current, in a current detection device. The current detection device of the present invention includes two or more conductors through which a current shunted from a same conductor flows; conductors through which the shunted current flows have portions opposed to each other; currents flow in opposite directions in opposing portions of the conductors; and a magnetic field detecting element is provided between the opposing portions of the conductors.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: January 5, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Takashi Hirao, Akihiro Namba
  • Patent number: 10885146
    Abstract: Data analysis for structural health monitoring relating to a method of modal identification for structures with non-proportional damping based on extended sparse component analysis. Hilbert transform constructs analytical signal of acceleration response. Analytical signal is transformed into time-frequency domain using short-time-Fourier transform. The criterion is taken as the correlation coefficient of adjacent frequency points is close to 1. Points contributed by only one mode are detected from the time-frequency plane. Phases calculated at single-source-points are used to remove local outliers through local outlier factor method. Amplitudes of complex-valued mode shapes are estimated by Hierarchical clustering of amplitudes for time-frequency coefficients at single-source-points. Averaged phases of grouped single-source-points are estimated phases of complex-valued mode shapes. Finally, complex-valued mode shapes are acquired. Modal responses are estimated by sparse reconstruction method.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: January 5, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Tinghua Yi, Xiaojun Yao, Chunxu Qu, Hongnan Li
  • Patent number: 10866265
    Abstract: The inspection jig includes a rigid substrate, a flexible substrate connected to the rigid substrate, a support for supporting a part of the flexible substrate in a state that the part of the flexible substrate is protruded with respect to the rigid substrate, and a stretchable contactor provided on a protruding portion of the flexible substrate.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 15, 2020
    Assignee: YOKOWO CO., LTD.
    Inventor: Takahiro Nagata
  • Patent number: 10859604
    Abstract: A sensor for inductively measuring the current in a conductor flowing through a recess in a printed circuit board. Wire loops on the printed circuit board function as the inductive current sensor. Combined with a voltage measurement, the energy being dissipated in the conductor's load circuit can be determined and transmitted wirelessly. Control circuits can be integrated with the metering hardware to enable the remote modulation of the load's power. The inductive sensor(s) can be used to track differences between the load's supply and return currents. If a fault is detected, the circuit can be broken for safety, serving a ground fault circuit interruption (GFCI) purpose. The claimed invention can report measurements in real time, providing time series data for analyses sufficient to detect or identify an anomaly in the function and operation within a system's load or electrical power distribution network.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: December 8, 2020
    Inventor: Michael Lorek
  • Patent number: 10859623
    Abstract: At least one aspect of the disclosure is directed to a power conversion unit (PCU). The PCU includes a power converter circuit, a safety detection circuit including a plurality of known network impedances and a switch having a first end coupled between two of the plurality of network impedances and a second end coupled to an output terminal, and a controller communicatively coupled to the safety detection circuit and the at least one power converter circuit. The controller may be configured to operate the switch, determine one or more voltage values of the safety detection circuit, and calculate an insulation impedance based at least in part on the one or more voltage values, a position of the switch, and the plurality of known network impedances.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: December 8, 2020
    Assignee: SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC.
    Inventors: Emanuel Serban, Cosmin Pondiche-Muresan
  • Patent number: 10852325
    Abstract: Disclosed is a device for detecting a phase loss in an output current in an inverter. The device includes: an output current detection unit for detecting two phases output currents from two signals output from two shunt-resistors connected to two phases legs respectively; an output current calculation unit for calculating an output current of one remaining phase using the detected two phases output currents; and an output phase loss detection unit configured for detecting an output phase loss when the calculated output current is within a current band corresponding to the output phase loss or when the calculated output current has a magnitude equal to and a sign opposite to one of the detected two phases output currents.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 1, 2020
    Assignee: LSIS CO., LTD.
    Inventors: Chengde Xu, Chun-Suk Yang
  • Patent number: 10852342
    Abstract: A method for detecting and locating a fault affecting an electrical cable includes the steps of (a) placing a first sensor and a second sensor along the cable, the second sensor being an acoustic sensor; (b) detecting the occurrence of the fault with the first sensor at a first time, and with the second sensor at a second time; (c) taking into account a propagation speed of an acoustic wave generated by the fault; (d) estimating a position of the fault depending on the first time and on the second time, on the basis of the propagation speed resulting from step (c); (e) determining a reference propagation speed depending on the position resulting from step (d) of the fault, and comparing said reference propagation speed with the propagation speed taken into account in step (c); and, (f) depending on the comparison, validating the position resulting from step (d) or reiterating steps (c) to (f) while adjusting, in step (c), the propagation speed taken into account.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 1, 2020
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Safran Electrical & Power
    Inventors: Diego Alberto, Vincent Heiries, Raphael Toufflet, Christophe Trebosc, Emmanuel Bussy
  • Patent number: 10845384
    Abstract: An apparatus for coupling a test and measurement instrument to a device under test comprises a clip structured to be attached between two conductive portions of the device under test, and an insert structured to be removably installed in the clip. The insert is configured to provide a current path between the two conductive portions of the device under test. In embodiments, the insert comprises a resistive element, which may be a round rod resistor. Additional embodiments may be described and/or claimed herein.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 24, 2020
    Assignee: Tektronix. Inc.
    Inventor: Julie A. Campbell