Patents Examined by Thomas Denion
  • Patent number: 9551260
    Abstract: A deterioration diagnosis device for an oxidation catalyst includes: a multi-gas sensor disposed in an exhaust passage downstream of an oxidation catalyst, the multi-gas sensor including a NO2 sensor unit and a NOX sensor unit, the NO2 sensor unit directly detecting a NO2 concentration in exhaust gas after passing through the oxidation catalyst, and the NOX sensor unit directly detecting a NOX concentration in the exhaust gas; an NO concentration calculation unit configured to calculate an NO concentration in the exhaust gas after passing through the oxidation catalyst based on the NO2 concentration and the NOX concentration; and a deterioration judgment unit configured to determine a deterioration degree of the oxidation catalyst from an evaluation value based on the NO concentration calculated by the NO concentration calculation unit.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: January 24, 2017
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventor: Shiro Kakimoto
  • Patent number: 9546789
    Abstract: A system including a plurality of multi-tube fuel nozzles each having a plurality of tubes extending in an axial direction, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, a fuel nozzle housing including a first outer wall extending circumferentially about a central axis, wherein the plurality of multi-tube fuel nozzles are disposed in the fuel nozzle housing, an inlet flow conditioner removably coupled to a first end portion of the first outer wall, wherein the inlet flow conditioner includes a plurality of air openings, and an aft plate assembly removably coupled to a second end portion of the first outer wall, wherein the aft plate assembly includes an aft plate having a plurality of tube apertures, and the plurality of tubes extend to the plurality of tube apertures.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: Christopher Paul Keener, Jason Thurman Stewart
  • Patent number: 9546612
    Abstract: A power system may include an internal combustion engine, an exhaust gas recirculation system, a selective catalytic reduction system, and an engine control module. The internal combustion engine includes a plurality of combustion cylinders and a plurality of corresponding intake valves for controlling a flow of air from an intake into the cylinders. The engine control module is configured to adjust a closure timing of the intake valves based on at least one engine parameter and optimization of an operational cost of the power system. A method for controlling the power system may include recirculating a portion of an exhaust flow, injecting a reductant into the exhaust flow, and adjusting a closure timing of the intake valves based on at least one engine parameter and optimization of an operational cost of the power system.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: January 17, 2017
    Assignee: Caterpillar Inc.
    Inventors: Xinyu Ge, Kai Zhang
  • Patent number: 9546568
    Abstract: A cooling structure for a bearing housing for a turbocharger is provided. The cooling structure is configured so that the cooling structure has improved productivity, the occurrence of heat soak-back is reduced, and the cooling structure has improved cooling performance. The cooling structure cools both a bearing housing 13 and a bearing 52 by cooling water flowing through an annular cooling water path 13f formed in the bearing housing 13, and is provided with: a water path inlet 13h for supplying the cooling water and a water path outlet 13j for discharging the cooling water, which are provided in the bearing housing 13 to communicate with the annular cooling water path 13f; and a partial partition 14a in the bearing housing 13 to partially close a water path which forms the shortest route between the water path inlet 13h and the water path outlet 13j.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 17, 2017
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tadashi Kanzaka, Kenichiro Iwakiri, Hiroshi Ogita
  • Patent number: 9546642
    Abstract: The energy-storing and power-generating system comprises an energy-storing system and a power-generating system. The energy-storing system comprises a high pressure gas generator, a water storage apparatus and a water turbine. The high pressure gas generator comprises at least one sealed high pressure gas tank (2) and an air compressor (1) cooperating therewith. The water storage apparatus comprises at least one sealed water tank (3). The air compressor is in communicated with the high pressure gas tank via a gas inlet pipe (4), while the high pressure gas tank is in communication with the water tank via a gas outlet pipe (5). The water tank is connected to a water inlet of the water turbine (10) via a water outlet pipe. Blades (102) of the water turbine are connected to the power generator via main gears.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 17, 2017
    Inventor: Yunhe Deng
  • Patent number: 9546821
    Abstract: Provided is a small nuclear power generator which restores steam to water by applying pressure to the inside of a condenser using a pressurizer disposed over the condenser without condensing steam using cooling water. The small nuclear power generator includes: a nuclear reactor generating high-temperature heat by nuclear fission of a nuclear fuel; a steam generator converting internal water into steam by the high-temperature heat generated in the nuclear reactor; a turbine/generator including a steam turbine rotated by steam generated in the steam generator and a generator connected to an axis of the steam turbine and together rotating to produce electricity; and a condenser restoring steam to water by applying pressure to steam discharged after rotating the steam turbine using two or more pressurizers, again supplying the water into the steam generator, and formed of a titanium (Ti) or an alloy thereof.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: January 17, 2017
    Inventor: Il ho Choi
  • Patent number: 9546640
    Abstract: Systems and methods for generating electrical power using a solar power system comprising pressurized pipes for transporting liquid water. The pressurized pipes flow through solar collectors which concentrate sunlight on the water flowing through the pipes. The pressurization in the pipes allows the water flowing through the pipes to absorb large quantities of energy. The pressurized and heated water is then pumped to a heat exchanger coil where the thermal energy is released to produce steam for powering a steam turbine electrical generator. Thereafter, the water is returned to the solar collectors in a closed loop to repeat the process.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: January 17, 2017
    Assignee: U S MICROPOWER INC
    Inventor: Michael Newman
  • Patent number: 9546801
    Abstract: A solar-thermal conversion member includes a ?-FeSi2 phase material. The solar-thermal conversion member exhibits a high absorptance for visible light at wavelengths of several hundred nm and a low absorptance for infrared light at wavelengths of several thousand nm and, as a consequence, efficiently absorbs visible light at wavelengths of several hundred nm and converts the same into heat and exhibits little thermal radiation due to thermal emission at temperatures of several hundred ┬░ C. The solar-thermal conversion member may therefore efficiently absorb sunlight, provide heat, and prevent thermal radiation due to thermal emission.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 17, 2017
    Assignees: Toyota Jidosha Kabushiki Kaisha, Japan Fine Ceramics Center, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Akinori Sato, Yoshiki Okuhara, Seiichi Suda, Daisaku Yokoe, Takeharu Kato, Toru Sasatani
  • Patent number: 9545994
    Abstract: A device for feeding fluid to a hydraulic actuator for controlling a pitch of fan blades of a two-propeller turboprop, the device including: a fluid manifold secured to a rotor of the turboprop and including a cylindrical portion including at least two fluid-circulation grooves, each presenting an outlet orifice; a fluid-admission support secured to a stationary portion of the turboprop and including a cylindrical portion including at least two distinct fluid passages opening to fluid-admission tubes and each leading radially into one of the fluid-circulation grooves of the manifold; and a tub constrained to rotate with the fluid manifold and including a cylindrical portion including at least two fluid-flow channels, each fed with fluid by a respective one of the outlet orifices of the fluid dispenser, each fluid-flow channel leading to a respective chamber of a control actuator.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 17, 2017
    Assignee: SNECMA
    Inventors: Francois Gallet, Ivan Guy Rouesne
  • Patent number: 9546578
    Abstract: A valve operating system for an engine is provided. The system includes first and second detent mechanisms for holding a cam element at a first position when the cam element is shifted to one side in camshaft directions, and at a second position when the cam element is shifted to the other side. The detent mechanisms include first and second detent cams and first and second pushing members, respectively. The first detent cam includes first and second grooves and a first top portion. The second detent cam includes third and fourth grooves and a second top portion. The first and second grooves have inclining portions extending from the first top portion toward bottoms thereof, inclining with respect to the camshaft directions, respectively. The third and fourth grooves have inclining portions extending from the second top portion toward bottoms thereof, inclining with respect to the camshaft directions, respectively.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: January 17, 2017
    Assignee: Mazda Motor Corporation
    Inventors: Akitomo Takagi, Toshimasa Kotani
  • Patent number: 9546656
    Abstract: The present invention relates to a fluid machine. A pump integrated expander (29A) includes a pump unit (60) and an expansion unit (50). In the pump unit (60), a casing member (65) supports a gear pump (61), a rotating shaft (28) and a driven crank mechanism (81). In the expansion unit (50), a casing including a main body (51a) and a casing member (54) supports an expander (23) including a fixed scroll (51) and an orbiting scroll (52). The pump integrated expander (29A) is divided into the pump unit (60) and the expansion unit (50) by separating at the fitted portion of a tubular portion (65c) on the pump unit (60) side and a smaller inner diameter portion (54b) on the expansion unit (50) side and by pulling the eccentric bush (83) out of a drive bearing (56).
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: January 17, 2017
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Shinji Nakamura, Hirofumi Wada, Yuuta Tanaka, Yasuhiro Furusawa
  • Patent number: 9540983
    Abstract: A regeneration device (22) executes regeneration treatment of a filter (21) in an exhaust gas purifying device (18) by burning particulate matter trapped in the filter (21). The regeneration device (22) interrupts the regeneration treatment of the filter (21) when an exhaust gas temperature T detected by an exhaust gas temperature sensor (26) becomes less than an exhaust gas temperature threshold Tt during a period of performing the regeneration treatment of the filter (21). In a case where the regeneration treatment of the filter (21) is interrupted, when the exhaust gas temperature T becomes equal to or more than the exhaust gas temperature threshold Tt, the regeneration treatment of the filter (21) is restarted.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 10, 2017
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Shuuhei Noguchi, Hajime Yoshida
  • Patent number: 9540999
    Abstract: A dual cycle system for generating shaft power using a supercritical fluid and a fossil fuel. The first cycle is an open, air breathing Brayton cycle. The second cycle is a closed, supercritical fluid Brayton cycle. After compression of air in the first cycle, the compressed air flows through a first cross cycle heat exchanger through which the supercritical fluid from the second cycle flows after it has been compressed and then expanded in a turbine. In the first cross cycle heat exchanger, the compressed air is heated and the expanded supercritical fluid is cooled. Prior to expansion in a turbine, the compressed supercritical fluid flows through a second cross cycle heat exchanger through which also flows combustion gas, produced by burning a fossil fuel in the compressed air in the first cycle. In the second cross cycle heat exchanger, the combustion gas is cooled and the compressed supercritical fluid is heated.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: January 10, 2017
    Assignee: Peregrine Turbine Technologies, LLC
    Inventor: David S. Stapp
  • Patent number: 9540959
    Abstract: A system and method for generating electric power using a generator coupled to a turboexpander is disclosed. The system includes one or more thermal pumps configured for heating a fluid to generate a pressurized gas. A portion of the pressurized gas is discharged to a buffer chamber for further utilization in a Rankine system. A further portion of the pressurized gas is expanded in a turboexpander for driving a generator for generating electric power. Optionally, the system includes a pump to pressurize a portion of the fluid depending on the systems operating condition. The system further includes one or more sensors for sensing temperature and pressure and outputs one or more signals representative of the sensed state. The system includes a control unit for receiving the signals and outputs one or more control signals for controlling the flow of gases and liquid in the valves and the check valve.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 10, 2017
    Assignee: General Electric Company
    Inventors: Sebastian Walter Freund, Matthew Alexander Lehar, William Joseph Antel, Jr., Pierre S├ębastien Huck, Hannes Christopher Buck, Trevor James Kirsten, Kenneth William Kohl, Matthew Michael Lampo, Charles Michael Jones, Amit Gaikwad, Lars Olof Nord
  • Patent number: 9541094
    Abstract: A scroll structure of a centrifugal compressor 1 having a spirally formed scroll passage 13. The scroll passage 13 includes: a flat connecting portion A at a flow passage joint 23 where a scroll start and a scroll end of the scroll passage 13 meet, this flat connecting portion having a flat cross-sectional shape with a same height as that of an outlet passage of a diffuser; and a transition part 21 where the flat cross-sectional shape of the flat connecting portion A gradually changes back to a circular cross-sectional shape along a circumferential direction.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: January 10, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenichiro Iwakiri, Isao Tomita, Motoki Ebisu, Hiroshi Suzuki, Takashi Shiraishi
  • Patent number: 9540957
    Abstract: Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications in combined cycle power plants are disclosed. In one embodiment of the method for efficient response to load variations in a combined cycle power plant, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: January 10, 2017
    Assignee: The Research Foundation of the City University of New York
    Inventors: Reuel Shinnar, Hitesh Bindra, Shlomo Shinnar, Meir Shinnar
  • Patent number: 9540953
    Abstract: A housing-side structure of a turbomachine, in particular of a gas turbine, including an in particular segmented jacket ring (16), which carries an abradable lining for radially outer ends of rotor-side moving blades of a moving blade ring, wherein the jacket ring (16) carrying the abradable lining is connected by means of at least one constriction (18) to a stator-side housing part (19), which is radially adjacent to the jacket ring (16) on the outside and the jacket ring is thermally decoupled from said stator-side housing.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 10, 2017
    Assignee: MTU Aero Engines GmbH
    Inventor: Wilfried Weidmann
  • Patent number: 9540961
    Abstract: Systems, methods, and apparatuses are directed to monitoring a capacity at which an engine is operating, the engine comprising a turbocharger. It can be determined whether the engine is operating above a threshold capacity. If the engine is operating above a threshold capacity, a closed-loop thermal cycle working fluid can be heated with heated air from the turbocharger. If the engine is operating at or below a threshold capacity, the working fluid can be heated with exhaust from the engine. The heated working fluid can be directed to a turbine generator, which can generate electrical power.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 10, 2017
    Assignee: Access Energy LLC
    Inventors: Herman Artinian, Keiichi Shiraishi
  • Patent number: 9540936
    Abstract: A method and at least two devices demonstrate improvements to energy extraction from a compressible working fluid in a liquid ring heat engine, which has a rotor mounted in a case. A space in the case is occupied by a liquid that establishes a liquid ring piston for the rotor. The rotor defines at least a first and a second operating zone. In the first zone, the working fluid is expanded against the liquid and, in the second zone, the working fluid is re-compressed. Between the two zones, the working fluid is cooled. In one device, the cooling step occurs on the rotor in a third zone. In another device, the cooling occurs outside of the case.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 10, 2017
    Assignee: Ohio State Innovation Foundation
    Inventors: Codrin-Gruie Cantemir, Fabio Chiara, Marcello Canova
  • Patent number: 9541016
    Abstract: Provided are a throttle control device for an internal combustion engine and a throttle control method for an internal combustion engine, which are capable of avoiding occurrence of overshoot of a supercharging pressure at the time of deceleration to improve durability of components in an engine equipped with a supercharger. The engine equipped with the supercharger includes a bypass passage which bypasses a turbine of the supercharger. In the bypass passage, a wastegate valve for adjusting a flow-path area of the bypass passage by a wastegate actuator is provided. An ECU (50) increases the flow-path area of the wastegate valve for deceleration to be started during a high-load operation and closes a throttle valve after confirming that a throttle-valve upstream pressure becomes lower than a predetermined value. As a result, the overshoot of the throttle-valve upstream pressure can be avoided reliably.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: January 10, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takeshi Hashimoto