Patents Examined by Thuan D. Dang
  • Patent number: 10273422
    Abstract: A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 30, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10272365
    Abstract: A well flow separator vessel having a sediment chamber at the inlet end of the vessel with a knock-down billet, followed by a coalescer and a first horizontal flow path between an upper horizontal divider and a lower horizontal divider extending the cylinder length from the sediment chamber towards the distal end of the vessel. At the far end of the first flow path, gasses are received through a scrubber/demister into a second horizontal flow path between the upper horizontal divider and the top side of the vessel, also extending the cylinder length, except directing flow in the reverse direction back towards the inlet end of the vessel towards a gas outlet.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 30, 2019
    Inventors: Randy J. Cumbee, Adrian K. Laster
  • Patent number: 10273415
    Abstract: A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 30, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10259758
    Abstract: The present invention relates to an integrated process to convert crude oil into petrochemical products comprising crude oil distillation, aromatic ring opening, and olefins synthesis, which process comprises subjecting a hydrocarbon feed to aromatic ring opening to produce LPG and subjecting the LPG produced in the integrated process to olefins synthesis. Furthermore, the present invention relates to a process installation to convert crude oil into petrochemical products comprising a crude distillation unit comprising an inlet for crude oil and at least one outlet for kerosene and/or gasoil; an aromatic ring opening unit comprising an inlet for a hydrocarbon feed to aromatic ring opening and an outlet for LPG; and a unit for the olefins synthesis comprising an inlet for LPG produced by the integrated petrochemical process installation and an outlet for olefins.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 16, 2019
    Assignees: SAUDI BASIC INDUSTRIES CORPORATION, SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Andrew Mark Ward, Ravichander Narayanaswamy, Vijayanand Rajagopalan, Arno Johannes Maria Oprins, Egidius Jacoba Maria Schaerlaeckens, Raul Velasco Pelaez
  • Patent number: 10260011
    Abstract: The present invention relates to an integrated process to convert crude oil into petrochemical products comprising crude oil distillation, dearomatization, ring opening, and olefins synthesis, which process comprises subjecting a hydrocarbon feed to dearomatization to produce a first stream enriched in aromatic hydrocarbons and naphthenic hydrocarbons and a second stream enriched in alkanes; subjecting a stream enriched in aromatic hydrocarbons and naphthenic hydrocarbons to ring opening to produce alkanes; and subjecting refinery unit-derived alkanes produced in the process to olefins synthesis.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 16, 2019
    Assignees: SAUDI BASIC INDUSTRIES CORPORATION, SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Andrew Mark Ward, Ravichander Narayanaswamy, Arno Johannes Maria Oprins, Vijayanand Rajagopalan, Egidius Jacoba Maria Schaerlaeckens, Raul Velasco Pelaez
  • Patent number: 10252956
    Abstract: A process utilizing an ionic liquid is described. The process includes contacting a hydrocarbon feed with an ionic liquid component, the ionic liquid component comprising a mixture of a first ionic liquid and a viscosity modifier, wherein a viscosity of the ionic liquid component is at least about 10% less than a viscosity of the first ionic liquid.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 9, 2019
    Assignee: UOP LLC
    Inventors: Avram M. Buchbinder, Erin M. Broderick, Susie C. Martins, Alakananda Bhattacharyya, Stuart Smith
  • Patent number: 10252240
    Abstract: Producing C5 olefins from steam cracker C5 feeds may include reacting a mixed hydrocarbon stream comprising cyclopentadiene, C5 olefins, and C6+ hydrocarbons in a dimerization reactor where cyclopentadiene is dimerized to dicyclopentadiene. The dimerization reactor effluent may be separated into a fraction comprising the C6+ hydrocarbons and dicyclopentadiene and a second fraction comprising C5 olefins and C5 dienes. The second fraction, a saturated hydrocarbon diluent stream, and hydrogen may be fed to a catalytic distillation reactor system for concurrently separating linear C5 olefins from saturated hydrocarbon diluent, cyclic C5 olefins, and C5 dienes contained in the second fraction and selectively hydrogenating C5 dienes. An overhead distillate including the linear C5 olefins and a bottoms product including cyclic C5 olefins are recovered from the catalytic distillation reactor system.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: April 9, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Yongqiang Xu, Peter Loezos, Willibrord A. Groten, Romain Lemoine
  • Patent number: 10252957
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 9, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Vincent A Welch, James R Butler
  • Patent number: 10246383
    Abstract: A process is described for producing paraxylene, in which an aromatic hydrocarbon feedstock comprising benzene and/or toluene is contacted with an alkylating reagent comprising methanol and/or dimethyl ether in an alkylation reaction zone under alkylation conditions in the presence of an alkylation catalyst to produce an alkylated aromatic product comprising xylenes. The alkylation catalyst comprises a molecular sieve having a Constraint Index ?5, and the alkylation conditions comprise a temperature less than 500° C. Paraxylene may then be recovered from the alkylated aromatic product.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 2, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Seth M. Washburn
  • Patent number: 10246387
    Abstract: A process is described for producing paraxylene, in which an aromatic hydrocarbon feedstock comprising benzene and/or toluene is contacted with an alkylating reagent comprising methanol and/or dimethyl ether in an alkylation reaction zone under alkylation conditions in the presence of an alkylation catalyst to produce an alkylated aromatic product comprising xylenes. The alkylation catalyst comprises a molecular sieve having a Constraint Index ?5, and the alkylation conditions comprise a temperature less than 500° C. The alkylation catalyst may be selectivated to produce a higher than equilibrium amount of paraxylene by using a molar ratio of alkylating agent to aromatic of at least 1:4.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 2, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Tan-Jen Chen
  • Patent number: 10240099
    Abstract: Processes for the production of transportation fuel from a renewable feedstock. A catalyst is used which is more selective to hydrodeoxygenate the fatty acid side chains compared to decarboxylation and decarbonylation reactions. A gaseous mixture of carbon monoxide and hydrogen can be supplied to the conversion zone. Water may also be introduced into the conversion zone to increase the amount of hydrogen.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 26, 2019
    Assignee: UOP LLC
    Inventors: Krishna Mani, Kanchan Dutta, Avnish Kumar, Anjan Ray
  • Patent number: 10239754
    Abstract: A process is disclosed for reducing loss of hydrogen in solution to the fractionation section of a hydroprocessing unit. The hot liquid stream is stripped with an inert gas in a hot flash stripper to urge hydrogen into the hot flash vapor stream. Substantial conservation of hydrogen gas is achieved.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 26, 2019
    Assignee: UOP LLC
    Inventors: Neeraj Tiwari, Richard K. Hoehn, Kiran Ladkat
  • Patent number: 10233396
    Abstract: A method of processing one or more streams in a benzene production system comprising receiving a reactor effluent stream comprising benzene from an aromatization reactor system; introducing reactor effluent stream into a first separator to produce first gas stream and first liquid stream; splitting the first gas stream into first portion and second portion of first gas stream; introducing first portion of first gas stream into a first compressor to produce first compressed gas stream; introducing first compressed gas stream into a second separator to produce recycle gas stream comprising hydrogen and second liquid stream; recycling recycle gas stream to aromatization reactor system; introducing second portion of first gas stream into a second compressor to produce second compressed gas stream; introducing second compressed gas stream into a third separator to produce gas product stream comprising hydrogen and third liquid stream; and optionally recycling gas product stream to aromatization reactor system.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 19, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Reza Khankal, Scott G. Morrison, Steven D. Bridges, Cameron M. Crager, Vincent D. McGahee
  • Patent number: 10227271
    Abstract: An integrated process, suitable for use in a new or retrofitted plant, produces an olefin or di-olefin via the dehydrogenation of an appropriate C3-C4 hydrocarbon feed includes (1) contacting the feed and a dehydrogenation catalyst having a Geldart A or Geldart B classification in a fluidized bed at a temperature from 550° C. to 760° C. and a pressure from about 41.4 to about 308.2 kPa (about 6.0 to about 44.7 psia) and a catalyst to feed ratio, w/w, from 5 to 100 to form a dehydrogenate product; separating the dehydrogenate product and unreacted starting feed mixture from a portion of the catalyst by means of a cyclonic separation system; reactivating the catalyst in a fluidized regenerator by combustion at 660° C. to 850° C., followed by contact with an oxygen-containing fluid at 660° C.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 12, 2019
    Assignee: Dow Global Technologies LLC
    Inventor: Matthew T. Pretz
  • Patent number: 10227272
    Abstract: Embodiments of methods and apparatuses for recovery of ethylene from FCC absorber off-gas comprising a heavy cut comprising ethylene, ethane and heavier hydrocarbons and a light cut comprising hydrogen, nitrogen and methane. An exemplary method includes passing the FCC absorber off-gas to an adsorption zone containing an adsorbent selective for the adsorption of the light cut, the adsorption zone adsorbing at least a portion of the light cut and recovering an adsorption zone effluent stream comprising the heavy cut. The adsorption zone effluent is passed to a demethanizer column to provide an overhead stream comprising hydrogen, nitrogen, methane, ethylene and ethane and a net bottoms stream comprising ethylene, ethane and the heavier hydrocarbons.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 12, 2019
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Joseph A. Montalbano
  • Patent number: 10214466
    Abstract: According to one embodiment described in this disclosure, a process for producing propylene may comprise at least partially metathesizing a first stream comprising at least about 10 wt. % butene to form a metathesis-reaction product, at least partially cracking the metathesis-reaction product to form a cracking-reaction product comprising propylene, and at least partially separating propylene from the cracking-reaction product to form a product stream comprising at least about 80 wt. % propylene.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: February 26, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Sohel Shaikh, Aqil Jamal, Zhonglin Zhang
  • Patent number: 10207964
    Abstract: A process for making cumene by the alkylation of benzene with propylene using a benzene alkylation catalyst that comprises an organotemplate-free zeolite beta having a silica-to-alumina molar ratio of less than 20 and synthesized without an organic structure directing agent (SDA).
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: February 19, 2019
    Assignee: SHELL OIL COMPANY
    Inventor: Ruth Mary Kowaleski
  • Patent number: 10196325
    Abstract: The present invention relates to a multistage process and catalyst system therefor to convert syngas to aromatics. In a first stage, syngas is converted to a C1-C4 alcohol mixture by contacting syngas with a first catalyst comprising rhodium or copper at moderate temperature. In a second stage, the C1-C4 alcohol mixture is converted into an aromatic product by contact with a second catalyst comprising a molecular sieve and at least one Group 8-14 element, the molecular sieve having a Constraint Index about 1 to 12 and a silica to alumina ratio of about 10 to 100 at effective conversion conditions. The final aromatic product is rich in benzene, toluene, and xylenes (e.g. greater than 50% aromatics on a hydrocarbon basis).
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: February 5, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Nikolaos Soultanidis, Mayank Shekhar, John S. Coleman
  • Patent number: 10190056
    Abstract: The present invention provides a process for producing liquid hydrocarbon products from a solid biomass feedstock, said process comprising the steps of: a) providing in a first hydropyrolysis reactor vessel a first hydropyrolysis catalyst composition; b) contacting the solid biomass feedstock with said first hydropyrolysis catalyst composition and molecular hydrogen in said first hydropyrolysis reactor vessel to produce a product stream comprising partially deoxygenated hydropyrolysis product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; c) removing said char and catalyst fines from said product stream; d) hydroconverting said partially deoxygenated hydropyrolysis product in a hydroconversion reactor vessel in the presence of one or more hydroconversion catalyst and of the H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a vapor phase product comprising substantially fully deoxygenated hydrocarbon product, H2O, CO, CO2, and C1-C3 gases.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 29, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Srikant Gopal, Madhusudhan Rao Panchagnula, Alan Anthony Del Paggio
  • Patent number: 10190063
    Abstract: A process (20) to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating (42) an olefins-containing Fischer-Tropsch condensate (64) into a light fraction (68), an intermediate fraction (82) and a heavy fraction (94), oligomerizing (44) at least a portion of the light fraction (68) to produce a first olefinic product (72) which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating (50) at least a portion of the intermediate fraction (82) to produce an intermediate product (84) which includes internal olefins and alpha-olefins, and synthesizing (52) higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product (86), and (ii) dimerizing (52) at least a portion of the intermediate fraction to produce a second olefinic product (86).
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: January 29, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet