Patents Examined by Timothy J. Dole
  • Patent number: 10291137
    Abstract: A flyback power converter includes a transformer having an auxiliary winding for generating an auxiliary voltage and providing a supply voltage on a supply node; a primary side controller circuit which is powered by the supply voltage from the supply node; and a high voltage (HV) start-up circuit. The HV start-up circuit is coupled to an high voltage signal through a HV input terminal and generates the supply voltage through a supply output terminal, wherein when the supply voltage does not exceed a start-up voltage threshold, a HV start-up switch conducts the HV input terminal and the supply output terminal to provide the supply voltage, and when the supply voltage exceeds a start-up voltage threshold, the HV start-up switch is OFF. The HV start-up circuit and the primary side controller circuit are packaged in two separate integrated circuit packages respectively.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: May 14, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Tzu-Chen Lin, Kun-Yu Lin, Li-Yang Hsiao, Yung-Chih Lai
  • Patent number: 10291130
    Abstract: A method includes generating a first gain control signal and a second gain control signal in response to a gain transition signal indicating a transition of a power converter from a first gain mode to a second gain mode. The method further includes causing the power converter to enter the first gain mode in response to the first gain control signal, and causing the power converter to enter the second gain mode in response to the second gain control signal. A circuit includes a gain transition controller generating a first gain control signal and a second gain control signal in response to a gain transition signal, and a gain control circuit causing the power converter to enter the first gain mode in response to the first gain control signal and causing the power converter to enter the second gain mode in response to the second gain control signal.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: May 14, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Hyun-Chul Eum, Tae-Sung Kim, Young-Mo Yang, Sung-Won Yun, Woo-Kang Jin
  • Patent number: 10291146
    Abstract: In some examples, a rectifier device includes a semiconductor substrate, an anode terminal and a cathode terminal connected by a load current path of a first MOS transistor and a diode connected parallel to the load current path. An alternating input voltage is operably applied between the anode terminal and the cathode terminal. Further, a control circuit is coupled to a gate electrode of the first MOS transistor and configured to switch on the first MOS transistor for an on-time period, during which the diode is forward biased. A gate driver circuit is included in the control circuit and includes a buffer capacitor and a cascade of two or more transistor stages connected between the buffer capacitor and the gate electrode of the first MOS transistor.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 14, 2019
    Assignee: Infineon Technologies AG
    Inventors: Damiano Gadler, Albino Pidutti
  • Patent number: 10291109
    Abstract: Critical-mode soft-switching techniques for a power converter are described. In one example, a power converter includes a converter electrically coupled between an alternating current (AC) power system and a direct current (DC) power system, where the converter includes a number of phase legs. The power converter can also include a control system configured, during a portion of a whole line cycle of the AC power system, to clamp a first phase leg of the converter from switching and operate second and third phase legs of the converter independently in either critical conduction mode (CRM) or in discontinuous conduction mode (DCM).
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 14, 2019
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Zhengrong Huang, Zhengyang Liu, Fred C. Lee, Qiang Li, Furong Xiao
  • Patent number: 10291139
    Abstract: A transformer circuit includes a first transformer, a second transformer and an inductor, where a first terminal of the first transformer is coupled to a first terminal of the second transformer. The inductor is coupled between a second terminal of the first transformer and a second terminal of the second transformer.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 14, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Grover Victor Torrico-Bascopé
  • Patent number: 10281941
    Abstract: A voltage generating circuit includes a first resistance voltage dividing circuit, configured by low temperature coefficient resistors being connected in series, that generates a reference voltage by resistance-dividing a predetermined power supply voltage, one or a multiple of a second resistance voltage dividing circuit, configured by a resistor having a positive or negative resistance temperature coefficient and the low temperature coefficient resistor being connected in series, that generates a temperature-dependent divided voltage by resistance-dividing the power supply voltage, and an instrumentation amplifier that generates the comparison reference voltage in accordance with a difference between the reference voltage and the divided voltage.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 7, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takahiro Mori, Masashi Akahane
  • Patent number: 10284096
    Abstract: A control circuit controls a switch of a switching current converter receiving an input quantity, with a transformer having a primary winding and a sensor element generating a sensing signal correlated to a current in the primary winding. The control circuit has a comparator stage configured to compare a reference signal with a comparison signal correlated to the sensing signal and generate an opening signal for the switch. The comparator stage has a comparator element and a delay-compensation circuit. The delay-compensation circuit is configured to generate a compensation signal correlated to the input quantity and to a propagation delay with respect to the opening signal. The comparator element generates the opening signal with an advanced timing correlated to the input quantity and to the propagation delay.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: May 7, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventor: Giovanni Gritti
  • Patent number: 10284097
    Abstract: A system comprises an input power stage coupled to a primary side of a transformer, an output power stage coupled to a secondary side of a transformer, a first common node capacitor and a common node resistor connected in series between a midpoint of the secondary side of the transformer and ground and a detector having an input connected to a common node of the first common node capacitor and the common node resistor, and an output connected to a control circuit, wherein the control circuit is configured to dynamically adjust a switching frequency of the system based upon an output of the detector.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 7, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Daoshen Chen, Heping Dai, Xujun Liu, Zhihua Liu, Liming Ye, Dianbo Fu, Ce Liu, Bing Cai
  • Patent number: 10273951
    Abstract: A solar pump system comprises a solar module configured to generate DC power from sunlight, a water pump, an inverter configured to convert the DC power into AC power in order to drive the water pump, and a controller configured to generate a control signal for controlling an output frequency of the AC power. The controller compares the DC link voltage with a first reference level, adjusts the output frequency of the AC power, if the DC link voltage is greater than the first reference level, and determines the output frequency to prevent the DC link voltage from being equal to or less than a second reference level, if the DC link voltage is less than the first reference level.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: April 30, 2019
    Assignee: LSIS CO., LTD.
    Inventor: Chaebong Bae
  • Patent number: 10276084
    Abstract: A circuit has a variable output that changes an output of a fixed input inversion amplification circuit, which includes a first operation amplifier with one input terminal that is applied with a fixed input value. The circuit includes an intermediate inversion amplification circuit having a second operation amplifier with an output terminal that is connected to another input terminal of the operation amplifier included in the fixed input inversion amplification circuit. One input terminal of the second operation amplifier is applied with the same input value as the fixed input value applied to the one input terminal of the first operation amplifier. Another input terminal of the second operation amplifier is applied with a variable input corresponding to an output of the first operation amplifier.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 30, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Shin Hye Chun, Dong Gyun Woo, Gyu Tae Choi
  • Patent number: 10277133
    Abstract: An isolated DC/DC converter includes a transformer having a first winding and a secondary winding, a switching transistor connected to the primary winding of the transformer, a rectifier element connected to the secondary winding of the transformer, a photocoupler, a feedback circuit configured to drive a light emitting element on an input side of the photocoupler by a forward current corresponding to an error between an output voltage of the DC/DC converter and a target voltage of the DC/DC converter, a conversion circuit configured to convert a collector current flowing in a light receiving element on an output side of the photocoupler into a feedback voltage having a negative correlation with the collector current, a pulse signal generator configured to generate a pulse signal corresponding to the feedback voltage, and a driver configured to drive the switching transistor depending on the pulse signal.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: April 30, 2019
    Assignee: ROHM CO., LTD.
    Inventors: Takumi Oe, Hiroyuki Murakami, Hiroki Kikuchi
  • Patent number: 10277145
    Abstract: A power supply device includes a power supply, a conversion module, and an electric current sensor, and circuitry. The power supply is to output a voltage that varies in accordance with an amount of electric power output from the power supply. The conversion module includes voltage converters electrically connected in parallel to convert the voltage to a target voltage. The electric current sensor is to detect current supplied from the power supply to the conversion module. The circuitry is configured to determine a number of operating voltage converters among the voltage converters, which are to actually convert the voltage, based on the current detected by the electric current sensor, the voltage, and a representative voltage representing a target range within which the target voltage is included.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 30, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Ryota Kitamoto
  • Patent number: 10270350
    Abstract: System and method for regulating a power conversion system. A system controller for regulating a power conversion system includes an operation-mode-selection component and a driving component. The operation-mode-selection component is configured to receive a first signal related to an output load of the power conversion system and a second signal related to an input signal received by the power conversion system and output a mode-selection signal based on at least information associated with the first signal and the second signal. The driving component is configured to receive the mode-selection signal and generate a drive signal based on at least information associated with the mode-selection signal, the driving signal corresponding to a switching frequency.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 23, 2019
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Yuan Lin, Xiaomin Huang, Qiang Luo, Lieyi Fang
  • Patent number: 10270332
    Abstract: According to the overload current limiting method for a voltage source converter, when a pole control system receives a water-cooling overload current limiting instruction, an active and reactive instruction are changed at the same time according to a specified slope, so that an absolute value of an arm current of the converter decreases in a fixed slope, and can be ensured that active power and reactive power fall to zero at the same time, and a water-cooling load limiting aim of the converter can be achieved by reducing the arm current. After a water-cooling overload power limiting instruction received by the pole control system is cancelled, a current value of the active power and the inactive power remain unchanged. When a water-cooling overload power limiting instruction is received again, decrease continues on the basis of current power values until the power falls to zero.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 23, 2019
    Assignees: NR ELECTRIC CO., LTD, NR ENGINEERING CO., LTD
    Inventors: Zhaoqing Hu, Yunlong Dong, Yu Lu, Haiying Li, Dongming Cao
  • Patent number: 10270335
    Abstract: A switching converter having an input for receiving an input voltage, an output for supplying an output voltage, and a converter device which includes an inductance, a capacitance, a diode and a switching device developed as a current source, for converting the input voltage into the output voltage.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: April 23, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventor: Rainer Gschwind-Schilling
  • Patent number: 10270340
    Abstract: An example two-path symmetrical-output adjustable power supply is provided, including a switching power supply module, a positive adjustment module, a negative adjustment module and a first operational amplifier. The switching power supply module is coupled to a DC power supply and the first operational amplifier and configured to output a positive voltage and a negative voltage in common-ground and equal in absolute value according to a feedback control based on a reference voltage and the output voltage of the first operational amplifier. The positive adjustment module is coupled to the positive voltage and configured to output a positive output voltage of the adjustable power supply according to a feedback control based on a given voltage and the positive output voltage. The negative adjustment module is coupled to the negative voltage and configured to output a negative output voltage of the adjustable power supply according to the positive output voltage.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: April 23, 2019
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Aidong Liang, Jian Zhao
  • Patent number: 10270327
    Abstract: A controller may include a memory having computer-readable instructions stored therein; and a processor configured to execute the computer-readable instructions to generate Pulse Width Modulation (PWM) signals to control power switches of an Active Front End (AFE) inverter based on at least a synthesized grid voltage vector angle at a terminal of an alternating current (AC) grid without using physical voltage sensors at the terminal of the AC grid, and control the AFE inverter to supply power to a load based on the PWM signals.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Deere & Company
    Inventors: Tianjun Fu, Long Wu, Kent Wanner, Jason Dickherber, Chris J. Tremel
  • Patent number: 10263529
    Abstract: One or more embodiments of the present disclosure may include a method of power regulation. The method may include determining a peak voltage level on a primary winding of a transformer. The method may also include selecting a particular coarse current level window based on the determined current level. Wherein the particular coarse current level window is one of a plurality of coarse current level windows. The method may additionally include determining a low window value based on the particular coarse current level window. The method may include generating a reference voltage based on the low window value. The method may also include generating a control signal based on the reference voltage. The method may additionally include transmitting the control signal to a switch circuit coupled to the primary winding of the transformer to adjust the current level on the primary winding of the transformer.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: April 16, 2019
    Assignee: Smart Prong Technologies, Inc.
    Inventors: Randall L. Sandusky, Neaz E. Farooqi
  • Patent number: 10263541
    Abstract: A single-phase DC/AC inverter has a single-phase inverter bridge with binary switches connected to an RLC low-pass filter. Digital control logic in a control circuit (or in a microcontroller) determines and controls a logic state q determining the position of the switches in the inverter bridge from sensed iL, vC values from the RLC filter. The control logic selects one of multiple possible logic states q based on whether the sensed iL, vC values belongs one of multiple boundary regions of a tracking band in an iL, vC state space.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 16, 2019
    Assignee: The Regents of the University of California
    Inventors: Ricardo G. Sanfelice, Jun Chai
  • Patent number: 10261113
    Abstract: A power converter with average current detection and the corresponding detecting method and detecting circuit are disclosed. The average current detecting circuit has an average voltage detecting circuit and a voltage-current converting circuit. The average voltage detecting circuit generates a voltage across a detecting resistor by letting an inductor current flowing through an output inductor of the power converter flowing through the detecting resistor. Further, the average voltage detecting circuit samples the voltage across the detecting resistor when a switch of the power converter transits from an on state into an off state and the opposite and then calculates the average value of the two sampled voltages. The voltage-current converting circuit converts the average value into an average current by multiplying the average value by a scaling factor.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 16, 2019
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Yike Li