Patents Examined by Tom Duong
  • Patent number: 8932532
    Abstract: A honeycomb structure includes a honeycomb unit having a plurality of through holes defined by partition walls along a longitudinal direction of the honeycomb unit. The honeycomb unit is manufactured by molding raw material paste by extrusion molding and thereafter by firing the molded raw material paste. The raw material paste contains zeolite obtained by ion-exchange with iron ions and an inorganic binder. A specific surface area of the zeolite is more than or equal to approximately 500 m2/g and less than or equal to approximately 800 m2/g. An external surface area of the zeolite is more than or equal to approximately 40 m2/g and less than or equal to approximately 80 m2/g.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: January 13, 2015
    Assignee: Ibiden Co., Ltd.
    Inventors: Masafumi Kunieda, Yosuke Matsukawa
  • Patent number: 8926913
    Abstract: A ceramic particulate filter having a porous catalytic material deposited on walls within the filter. Particulate matter is trapped in the walls of the filter and the catalytic material removes gases, such as nitrogen oxides (NOx), from gases passing through the filter. The filter, in one embodiment, is adaptable for use with internal combustion (gas and diesel) engines. A method of making the filter is also described.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: January 6, 2015
    Assignee: Corning Incorporated
    Inventors: David Henry, Maxime Moreno, Christophe Michel Remy
  • Patent number: 8926912
    Abstract: An exhaust gas processing device includes a honeycomb structure in a pillar shape including a honeycomb unit, a catalytic agent, an inorganic mat member, a cylindrical metallic member and an insulating layer. The honeycomb unit includes cell walls to define a plurality of cells which extend from a first end of the honeycomb unit to a second end of the honeycomb unit along a longitudinal direction. The catalytic agent is provided on the cell walls. The inorganic mat member is wound around an outer peripheral surface of the honeycomb structure. The cylindrical metallic member accommodates the honeycomb structure around which the inorganic mat member is wound. The insulating layer has a thickness of about 20 ?m to about 400 ?m and is densely formed. The insulating layer is provided between an inner surface of the cylindrical metallic member and the inorganic mat member.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Ibiden Co., Ltd.
    Inventors: Fumiyuki Mutsuda, Yoshitaka Fujita
  • Patent number: 8926911
    Abstract: A mounting mat for an exhaust gas treatment device including inorganic fibers, organic binder, high temperature resistant inorganic microspheres, and optionally intumescent material. The exhaust gas treatment device includes a housing, a fragile catalyst support structure resiliently mounted within the housing, and the mounting mat disposed in a gap between the housing and the fragile catalyst support structure.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: January 6, 2015
    Assignee: Unifax I LLC
    Inventors: Amit Kumar, Thomas S. Lacki
  • Patent number: 8926910
    Abstract: A hydrocarbon trap is provided for reducing cold-start hydrocarbon emissions. The trap contains an acidic absorption material for improving absorption of low molecular weight hydrocarbons. The acidic absorption materials may be used either alone or in combination with zeolites which are integrated into and/or supported on a monolithic substrate. The hydrocarbon trap may be positioned in the exhaust gas passage of a vehicle such that hydrocarbons are adsorbed on the trap and stored until the engine and exhaust reach a sufficient temperature for desorption.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Jason Aaron Lupescu, Hungwen Jen
  • Patent number: 8916100
    Abstract: A reducing agent aqueous solution mixing device includes an exhaust pipe, an injector, a mixing pipe, an inner pipe and a flow section. The exhaust pipe includes an elbow part and a linear part. The injector is disposed in the elbow part and injects a reducing agent aqueous solution. The mixing pipe receives the reducing agent aqueous solution injected from the injector, and includes an outlet portion formed spaced apart from an inner wall of the exhaust pipe, and a plurality of openings formed on the outer peripheral surface thereof. The inner pipe is disposed in the linear part and allows the exhaust gas to flow through the inside and the outer periphery thereof. The flow section is formed between the outlet portion of the mixing pipe and the inner wall of the exhaust pipe to direct the exhaust gas to the inner pipe.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 23, 2014
    Assignee: Komatsu Ltd.
    Inventors: Tadashi Iijima, Hirofumi Kizawa, Boku Itou, Shinji Tsujimura, Takashi Katou, Tetsuo Orita, Kanji Namimatsu, Issei Hara, Hiroyuki Tomioka
  • Patent number: 8916103
    Abstract: The present invention relates to a fiber mat, preferably a non-intumescent, polycrystalline, needle-punched or stitchbonded aluminia-silica fiber mat, which contains an organosilicon compound. The fiber mat comprises a fiber blanket which is essentially free of organic binder and which is impregnated with an organosilicon compound selected from the group consisting of siloxane compounds, alkoxy group-containing silanes, hydrolysates and condensates of these compounds, and combinations thereof. In a further embodiment the fiber mat comprises a high friction coating on at least the side of the mat which is to be brought in contact with a pollution control element of a pollution control device. Furthermore, the present invention relates to a pollution control device containing such a fiber mat.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: December 23, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Ulrich E. Kunze, Claus Middendorf, Harald H. Krieg
  • Patent number: 8916101
    Abstract: A reducing agent aqueous solution mixing device includes an exhaust pipe, an injector, a mixing pipe and an inner pipe. The exhaust pipe includes an elbow part having a curved portion, and a linear part disposed downstream of the elbow part. The injector is disposed outside the curved portion and injects the reducing agent aqueous solution towards the linear part. The mixing pipe is disposed inside the elbow part to surround the reducing agent aqueous solution injected from the injector. The mixing pipe includes a plurality of openings on its outer peripheral surface. The inner pipe is disposed downstream of the mixing pipe and spaced apart from an outlet portion of the mixing pipe and from an inner wall of the linear part to allow the exhaust gas to flow through the inside of the inner pipe and along the outer periphery of the inner pipe.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 23, 2014
    Assignee: Komatsu Ltd.
    Inventors: Tadashi Iljima, Hirofumi Kizawa, Boku Itou, Shinji Tsujimura, Takashi Katou, Tetsuo Orita, Kanji Namimatsu, Issei Hara, Hiroyuki Tomioka
  • Patent number: 8911674
    Abstract: The flow of electricity to the case (4) of an electrically heated catalyst (1) is inhibited. The heating element (2), the case (4), and the electrically insulating inner pipe (3) provided between the heating element (2) and the case (4) and inner mats 51 and 52 that are shorter in the direction of the flow of exhaust gases than inner pipe (3) that are provided in a compressed condition between heating element (2) and inner pipe (3), and outer mats 53 and 54 that are shorter in the direction of the flow of exhaust gases than inner pipe (3) that are provided in a compressed condition between inner pipe (3) and case (4) are provided and the load per unit area acting upon inner pipe (3) at the contact surface between inner pipe (3) and outer mats 53 and 54 is larger than the load born per unit area of acting upon the heating element (2) at the contact surface between the inner mats 51 and 52 and heating element (2).
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mamoru Yoshioka, Noriaki Kumagai, Naoya Takagi
  • Patent number: 8894942
    Abstract: Electricity is suppressed from flowing to a case (4) of an electrically heated catalyst (1).
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: November 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mamoru Yoshioka, Takashi Watanabe
  • Patent number: 8871152
    Abstract: An exhaust gas processing device includes a first cylindrical metallic member, an inorganic mat member, a second cylindrical metallic member, and an insulating layer. The inorganic mat member is wound around an outer periphery of the first cylindrical metallic member. The second cylindrical metallic member accommodates the first cylindrical metallic member around which the inorganic mat member is wound. The insulating layer have a thickness of about 20 ?m to about 400 ?m and is provided at at least one of a first part which is an inner surface of the first cylindrical metallic member, a second part between an outer surface of the first cylindrical metallic member and the inorganic mat member, and a third part between an inner surface of the second cylindrical metallic member and the inorganic mat member.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: October 28, 2014
    Assignee: Ibiden Co., Ltd.
    Inventors: Fumiyuki Mutsuda, Yoshitaka Fujita
  • Patent number: 8865084
    Abstract: A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 21, 2014
    Assignee: Corning Incorporated
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Patent number: 8858891
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 8845973
    Abstract: A particle filter includes channels that are formed by porous walls and run between a first end face and a second end face of the particle filter. The first end face has a hydrolysis coating outside the channels. A device includes at least one exhaust gas line through which an exhaust gas can flow in a flow direction, a nozzle for introducing a reducing agent containing or forming ammonia, and the aforementioned particle filter. The first end face of the particle filter is oriented towards the nozzle. A motor vehicle having the particle filter or the device, is also provided.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: September 30, 2014
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventor: Rolf Brück
  • Patent number: 8845974
    Abstract: Catalyzed soot filters comprising a wall flow monolith having porous walls, a first washcoat permeating the porous walls and a second washcoat on the porous walls are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: September 30, 2014
    Assignee: BASF Corporation
    Inventors: Yuejin Li, Stanley A. Roth, Alfred H. Punke, Gary A. Gramiccioni
  • Patent number: 8834802
    Abstract: An exhaust purification system of an internal combustion engine of the present invention comprises a silver-alumina-based catalyst device arranged in the engine exhaust system. When a temperature of the silver-alumina-based catalyst device becomes a second set temperature T2 lower than a first set temperature T1 at which the silver-alumina-based catalyst device releases NO2, and releases NO, the silver-alumina-based catalyst device is heated such that a temperature elevation rate thereof is increased to make the temperature T of the silver-alumina-based catalyst device be a third set temperature T3 between the first set temperature T1 and the second set temperature T2.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihisa Tsukamoto, Hiromasa Nishioka, Katsuhiko Oshikawa, Hiroshi Otsuki, Junichi Matsuo, Shigeki Nakayama
  • Patent number: 8815167
    Abstract: An electrode according to one aspect of the present invention is formed on a base material composed of a ceramics. The electrodes includes a matrix composed of an Ni—Cr alloy (with a Cr content of 20 to 60 wt. %) or an MCrAlY alloy (M is at least one material selected from Fe, Co and Ni), and a disperse phase that is dispersed in the matrix and composed of an oxide mineral having a laminated structure. The ratio of area occupied by the disperse phase in a cross section of the electrode is 40 to 80%. With the structure like this, it is possible to suppress the increase in the electrical resistance even after a thermal cycle is performed.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Shimoda, Kazuaki Nishio, Yasuo Kinoshita, Tadashi Takagaki
  • Patent number: 8808633
    Abstract: A silico-alumino phosphate includes Si, Al, and P. A ratio of an amount of substance of Si to a sum of an amount of substance of Al and an amount of substance of P is approximately 0.22 or more and approximately 0.33 or less. An acid point is approximately 1.2 mmol/g or more. A honeycomb structural body includes a honeycomb unit. The honeycomb unit includes the silico-alumino phosphate and an inorganic binder. The honeycomb unit has a plurality of through-holes divided by a plurality of partition walls and arranged in a longitudinal direction of the honeycomb unit. An exhaust gas conversion apparatus includes the honeycomb structural body, a holding sealing member and a metal pipe. The holding sealing member is provided at an outer peripheral portion of the honeycomb structural body. The honeycomb structural body and the holding sealing member are installed in the metal pipe.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: August 19, 2014
    Assignee: Ibiden Co., Ltd.
    Inventors: Masafumi Kunieda, Yosuke Matsukawa, Takunari Murakami
  • Patent number: 8802016
    Abstract: The present invention relates to a catalyzed soot filter which comprises a wall flow substrate with an inlet end, an outlet end, a substrate axial length extending between the inlet end and the outlet end, and a plurality of passages defined by internal walls of the wall flow substrate wherein the plurality of passages comprise inlet passages having an open inlet end and a closed outlet end, and outlet passages having a closed inlet end and an open outlet end, and wherein the internal walls of the inlet passages comprise a zoned first inlet coating, the internal walls of the outlet passages comprise a zoned first outlet coating, and wherein the first inlet coating and the first outlet coating are present on the wall flow substrate at a coating loading ratio of less than 0.5.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: August 12, 2014
    Assignee: BASF Catalyst Germany GmbH
    Inventor: Gerd Grubert
  • Patent number: 8802015
    Abstract: An exhaust gas cleaning device (2) for an exhaust system (1) of an internal combustion engine with an exhaust gas cleaning element (7), which is arranged in a first tubular body (3), and with a second tubular body (4), to which the first tubular body (3) is detachably connected via a clamp connection (5). The clamp connection (5) includes a radially outwardly projecting first ring collar (8), formed at the first tubular body (3) and extending circumferentially in a closed form and a radially outwardly projecting second ring collar (9), formed at the second tubular body (4) and extending circumferentially in a closed form. A sealing ring (10) extends circumferentially in a closed form and is axially in contact with the first ring collar (8) and the second ring collar (9). A first ring body (11) is arranged on the outside at the first tubular body (3) and is axially in contact with the first ring collar on the side facing away from the sealing ring (10).
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: August 12, 2014
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Wolfgang Datz, Michael Krause