Patents Examined by Tom P Duong
  • Patent number: 11712657
    Abstract: Systems, methods, and apparatus are contemplated in which a tube cell that produces a dielectric barrier discharge (DBD) is individually configured to minimize the mixing of unwanted byproducts of the generated plasma with an exhaust air stream. The tube cell generates a DBD within a tube cell, such that oxidants or radicals are generated in an environment substantially separated from the exhaust stream. The generated oxidants are directed to intersect with the exhaust stream to minimize the generation of unwanted byproducts. The tube cells are further shaped and arranged in tube cell arrays to alter the flow dynamics of the exhaust stream and the oxidant or radical streams, including mixing of the streams.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 1, 2023
    Assignee: THRIVALTECH, LLC
    Inventor: Garrett Hill
  • Patent number: 11712685
    Abstract: The invention relates to a catalytic article comprising a substrate having an inlet and an outlet; a first coating comprising a blend of: (1) platinum on a support, and (2) a first SCR catalyst comprising a Cu- and Mn-exchanged molecular sieve; and a second coating comprising a second SCR catalyst; wherein the support comprises at least one of a zeolite or a SiO2-Al2O3 mixed oxide. The platinum may be fixed on the support in solution.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: August 1, 2023
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Yannick Bidal, Hai-Ying Chen, Joseph Fedeyko, Neil Greenham, Matthew Harris, Jing Lu
  • Patent number: 11702971
    Abstract: The present invention relates to a particulate filter which comprises a wall flow filter of length L and two different catalytically active coatings Y and Z, wherein the wall flow filter comprises channels E and A that extend in parallel between a first and a second end of the wall flow filter and are separated by porous walls which form the surfaces OE and OA, respectively, and wherein the channels E are closed at the second end and the channels A are closed at the first end. The invention is characterized in that the coating Y is located in the channels E on the surfaces OE and the coating Z is located in the channels A on the surfaces OA.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 18, 2023
    Assignee: UMICORE AG & CO. KG
    Inventors: Jan Schoenhaber, Naina Deibel, Martin Roesch, Stephanie Spiess
  • Patent number: 11679379
    Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: June 20, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Takeshi Hirabayashi, Akemi Satou, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
  • Patent number: 11668222
    Abstract: A catalytic composite is formed of a catalytic layered assembly including a porous catalytic fluoropolymer film and one or more felt batts connected with the porous catalytic fluoropolymer film. At least one felt batt is positioned adjacent the upstream side of the porous catalytic fluoropolymer film to form the catalytic composite. The fluoropolymer film is perforated to allow for enhanced airflow therethrough while retaining the capability of catalyzing the reduction or removal of chemical species in fluid flowing through the catalytic composite.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: June 6, 2023
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Robert Eves, Tarun Poddar, John A. Tomanovich
  • Patent number: 11666860
    Abstract: A methane destruction apparatus for capturing and converting fugitive methane gas emissions into carbon dioxide and water comprises a methane-capturing module for capturing the fugitive methane gas emissions and a methane conversion module for receiving captured methane from the methane-capturing module. The methane-capturing module includes a fugitive methane gas emission intake connected to an emissions line having a backpressure equal to 1 to 3 inches of water (249 to 746 Pa), a natural gas feed for feeding natural gas into the methane-capturing module, may include a relief vent for preventing overpressure within the methane-capturing module and a drain for draining liquids that have condensed within the methane-capturing module. The methane conversion module includes a conversion pad for catalytically converting the captured methane into carbon dioxide and water, a water vapour opening for outputting the water and a carbon dioxide opening for outputting the carbon dioxide.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: June 6, 2023
    Assignee: Thermon Canada Inc.
    Inventor: Alejandro Maldonado
  • Patent number: 11672051
    Abstract: An electrically heated support according to the present invention includes: a pillar shaped honeycomb structure, the honeycomb structure including an outer peripheral wall and a partition wall, the partition wall defining a plurality of cells, each of the cells penetrating from one end face to other end face to form a flow path; and a pair of electrode terminals provided on a surface of the outer peripheral wall. In a cross section of the honeycomb structure, the honeycomb structure includes: a plurality of first slits arranged, the first slits being configured to define an energizing path; and a least one second slit located in the energizing path, the second slit extending in a different direction from that of the first slits. A length of the energizing path from one electrode terminal to the other electrode terminal is longer than a diameter of the honeycomb structure.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: June 6, 2023
    Assignee: NGK INSULATORS, LTD.
    Inventor: Kenichi Ohashi
  • Patent number: 11661875
    Abstract: A tubular member for an exhaust gas treatment device according to at least one embodiment of the present invention includes: a tubular main body made of a metal; and an insulating layer formed at least on an inner peripheral surface of the tubular main body. The insulating layer contains glass containing a crystalline substance, and the glass contains silicon, boron, and magnesium.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: May 30, 2023
    Assignee: NGK INSULATORS, LTD.
    Inventors: Daichi Tanaka, Yukinari Shibagaki
  • Patent number: 11661879
    Abstract: A tubular member for an exhaust gas treatment device according to at least one embodiment of the present invention includes: a tubular main body made of a metal; and an insulating layer formed at least on an inner peripheral surface of the tubular main body. The insulating layer contains glass, the glass contains barium, and the glass has a content of barium of 5 mol % or more.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: May 30, 2023
    Assignee: NGK INSULATORS, LTD.
    Inventors: Daichi Tanaka, Yukinari Shibagaki
  • Patent number: 11643958
    Abstract: The present disclosure provides an exhaust gas purification material and an exhaust gas purification device that can efficiently remove harmful components even after being exposed to high temperature. Such exhaust gas purification material comprises metal oxide particles and noble metal particles supported on the metal oxide particles. The noble metal particles have a particle size distribution with a mean of 1.5 nm and 18 nm and a standard deviation of less than 1.6 nm.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: May 9, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norimichi Shimano, Taizo Yoshinaga, Shogo Shirakawa, Nobuyuki Takagi, Masahide Miura
  • Patent number: 11643959
    Abstract: A catalytic converter includes a catalyst substrate including a body having a length and defining a plurality of zones along the length, with each zone having at least one cross-sectional structure defining a plurality of cells forming an exhaust gas flow path through the length via cells of adjacent zones, and the cells being more densely arranged within the at least one cross-sectional structure of an upstream zone than an adjacent downstream zone. The catalytic converter also includes a wash-coat layer deposited on surfaces of the cells forming active surface area configured to react with exhaust gas traveling along the length. The exhaust gas flows along the exhaust gas flow path through the cells such that more active surface area is available for reaction in each upstream zone than an adjacent downstream zone.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 9, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexander Perkins, Robert D. Bedard
  • Patent number: 11623180
    Abstract: A catalytic converter is provided with: an inlet-side diffuser part; an outlet-side diffuser part; a case including an upstream-side cylindrical part and a downstream-side cylindrical part; an inner liner provided in the upstream-side cylindrical part; a first catalyst retained inside the inner liner; and a second catalyst retained inside the downstream-side cylindrical part. An end face of the second catalyst faces a peripheral surface of the inner liner. An annular flow path is provided between the upstream-side cylindrical part and the inner liner, and the first catalyst is insulated from heat by the annular flow path. A part of exhaust flows into the second catalyst via the annular flow path.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 11, 2023
    Assignees: NISSAN MOTOR CO., LTD., RENAULT S. A. S.
    Inventors: Takayuki Hamamoto, Hirofumi Tsuchida, Daisuke Takaki, Yuta Ishigaki
  • Patent number: 11614011
    Abstract: A pillar shaped honeycomb structure includes: a porous partition wall that defines a plurality of cells, the cells forming flow paths for a fluid, the cells extending from an inflow end face to an outflow end face; and an outer peripheral wall located at the outermost circumference. At least a part of surfaces of the partition walls has a surface layer, and the surface layer includes magnetic particles and has permeability.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 28, 2023
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Takehide Shimoda, Takashi Aoki, Hirofumi Sakamoto, Masaaki Masuda, Atsuo Kondo, Yunie Izumi, Kyohei Kato, Norihiro Wakita
  • Patent number: 11612844
    Abstract: A pillar-shaped honeycomb structure including a plurality of first cells extending from an inlet side end surface to an outlet side end surface, and a plurality of second cells extending from the inlet side end surface to the outlet side end surface, with a porous partition wall interposed therebetween, wherein a porous film having a porosity higher than that of the partition walls is provided on a surface of each of the first cells, and at a cross-section orthogonal to the direction in which the first cells of the pillar-shaped honeycomb structure filter extend, the average thickness of the porous film in the central portion is larger than the average thickness of the porous film in the outer peripheral portion.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: March 28, 2023
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshihiro Sato, Shuji Ueda, Koichi Sendo, Yutaka Ishii, Yuichi Tajima, Seiya Nakano, Ken Itazu
  • Patent number: 11614015
    Abstract: Subject of the invention is an exhaust gas purification system for a gasoline engine, comprising in consecutive order the following devices: a first three-way-catalyst (TWC1), a gasoline particulate filter (GPF) and a second three-way-catalyst (TWC2), wherein the oxygen storage capacity (OSC) of the GPF is greater than the OSC of the TWC2, wherein the OSC is determined in mg/l of the volume of the device. The invention also relates to methods in which the system is used and uses of the system.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 28, 2023
    Assignee: UMICORE AG & CO. KG
    Inventors: Jan Schoenhaber, Joerg-Michael Richter, Carolin Braun
  • Patent number: 11614014
    Abstract: An apparatus supplies voltage for an electrical heating catalytic converter. The apparatus includes: a direct current (DC) converter having an input for an input voltage and an output for an output voltage; a buck converter, which is configured to step down the output voltage of the DC converter to a supply voltage, which is lower than the output voltage, for the electrical heating catalytic converter; and a first electrical assembly, which is configured to rectify and smooth the supply voltage.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: March 28, 2023
    Assignee: DR. ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT
    Inventors: Dimo Schoettle, Juergen Scholz, Kai Soeren Mueller
  • Patent number: 11590445
    Abstract: Provided is an apparatus for treating waste gas of the electronics industry, and the apparatus includes: a reaction chamber in which an inlet and an outlet are formed and an inner space for purifying waste gas is formed; a first partition plate extending from an inner wall of the reaction chamber facing the inlet in a direction toward the inlet, dividing the inner space into a pre-treatment zone for collecting dust in the waste gas and a remaining purification zone; a second partition plate extending vertically downward from a ceiling of the reaction chamber, dividing the purification zone into a thermal decomposition zone for heating and thermally decomposing waste gas and a post-treatment zone; and a heater installed at the ceiling of the reaction chamber so as to be located in the thermal decomposition zone to thermally decompose a perfluorinated compound by heating waste gas introduced into the thermal decomposition zone; and a dry scrubber unit including one or more catalysts to collect at least one of t
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 28, 2023
    Inventors: Dong Soo Kim, Chul Hwan Kim, Hyun Kyung Kim
  • Patent number: 11590444
    Abstract: A honeycomb filter includes a pillar-shaped honeycomb substrate having a porous partition wall and a plugging portion provided so as to plug end at any one of the inflow end face side or the outflow end face side of the cell, wherein in a section orthogonal to the extending direction of the cell, the shape of the cell is hexagonal, the partition wall includes a first partition wall disposed between the inflow cell and the outflow cell and a second partition wall disposed between the inflow cells, and the first partition wall has a porous trapping layer on its surface for trapping particulate matter in exhaust gas, and the second partition wall has no trapping layer on its surface or has a trapping layer thinner than the trapping layer disposed on the surface of the first partition wall.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: February 28, 2023
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Aoki, Yasuyuki Furuta, Takahiro Honda, Koji Kuzutani
  • Patent number: 11571688
    Abstract: A honeycomb filter includes a honeycomb structure having a porous partition wall disposed to surround a plurality of cells; and a plugging portion provided at one end of the cell, wherein the honeycomb structure has an inflow side region including a range of up to at least 30% with respect to the total length of the honeycomb structure with the inflow end face as the starting point and an outflow side region including a range of up to at least 20% with respect to the total length of the honeycomb structure with the outflow end face as the starting point, in the extending direction of the cell of the honeycomb structure, an average pore diameter of the partition wall in the inflow side region is 9 to 14 ?m and an average pore diameter of the partition wall in the outflow side region is 15 to 20 ?m.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: February 7, 2023
    Assignee: NGK Insulators, Ltd.
    Inventors: Sachiko Ishida, Fumihiko Yoshioka
  • Patent number: 11566553
    Abstract: A hydro-active scrubber and reactor (HSR) system and apparatus is disclosed that includes a main body, an inlet configured to receive a first fluid medium comprised of pollutant particles, and a nozzle configured to dispense a second fluid medium within the main body. In addition, the HSR system and apparatus may also include a cylindrical body or hydro-vortex generator within the main body having a plurality of horizontally positioned rods projecting therefrom, wherein the cylindrical body further comprises a plurality of openings. Further, the HSR system and apparatus can include a motor configured to rotate the cylindrical body thereby directing the first and second fluid mediums through the cylindrical body. In addition, a first area within the main body can receive the pollutant particles from the first fluid medium, and a first outlet within the main body can be configured to direct the received pollutant particles out of the main body.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 31, 2023
    Inventors: Nathan Hastings, Stephan Hastings