Patents Examined by Uyen-Chau N. Le
  • Patent number: 9395507
    Abstract: A fiber optic hardware module includes an enclosure including a planar floor section, outer sidewalls adjoining the floor section and extending from the floor section to top edges, and a detachable top panel that covers an interior volume that is defined by the outer sidewalls and the floor section. Fiber optic cable ports are disposed on a first outer sidewall and feed into the interior volume. First and second mounting tabs are configured to secure the fiber optic hardware module to a planar surface that is flush against the floor section. A third mounting tab is configured to secure the fiber optic hardware module to a planar surface that is flush against the top panel. The third mounting tab is vertically offset from the first and second mounting tabs. The third mounting tab is laterally between the first and second mounting tabs.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: July 19, 2016
    Assignee: All Systems Broadband, Inc.
    Inventors: Donald James Gross, Timothy W. Dexter
  • Patent number: 9389387
    Abstract: An optical cable is provided. The optical cable includes a cable body having an outer surface and an inner surface defining a lumen and one or more optical transmission elements located within the lumen. The optical cable includes a groove array comprising a plurality of grooves located on the outer surface of the cable body. Each groove defines a trough having a lower surface located between peaks on either side of the trough, and the groove array includes an average groove spacing. The optical cable includes an ink layer applied to the cable body at the location of the groove array. The groove array and the ink layer are formed to limit abrasion experienced by the ink layer.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: July 12, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Dana Craig Bookbinder, David Wesley Chiasson, Andrew S. Dodd, Daniel Warren Hawtof, David Henry Smith, Kenneth Darrell Temple, Jr., Randall Dwaine Tuttle
  • Patent number: 9377584
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 28, 2016
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9366834
    Abstract: A pluggable optical transceiver, which is to be engaged with a rail prepared in the host system, is disclosed. The optical transceiver includes a housing that encloses optical and electrical components therein, a fastening screw that screws that engages the optical transceiver with the rail, and an actuator, which moves synchronously with the rotation of the fastening screw, protrudes from the side of the housing to be latched with the rail.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: June 14, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazushige Oki, Hiromi Kurashima
  • Patent number: 9366813
    Abstract: This invention is an optical improvement to minerals that exhibit an image translation capability. These minerals translate an image between faces; however, the minerals exhibit considerable crosstalk between crystal fibers, which reduce image sharpness, contrast, and signal. This invention greatly reduces crystal fiber crosstalk.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: June 14, 2016
    Inventor: Daniel Lee Stark
  • Patent number: 9366886
    Abstract: An optical switch includes a microresonator comprising a silicon-rich silicon oxide layer and a plurality of silicon nanoparticles within the silicon-rich silicon oxide layer. The microresonator further includes an optical coupler optically coupled to the microresonator and configured to be optically coupled to a signal source. The microresonator is configured to receive signal light having a signal wavelength, and at least a portion of the microresonator is responsive to the signal light by undergoing a refractive index change at the signal wavelength. The optical switch further includes an optical coupler optically coupled to the microresonator and configured to be optically coupled to a signal source. The optical coupler transmits the signal light from the signal source to the microresonator.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: June 14, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Anuranjita Tewary, Mark Brongersma
  • Patent number: 9354409
    Abstract: An optical receptacle has a first optical surface which receives incidence of light from a light emitting element, a reflecting surface which reflects the light along a substrate, a light separating section which separates light reflected at the reflecting surface into monitor light and signal light, a second optical surface which emits the monitor light toward a light receiving element, and a third optical surface which emits the signal light toward an optical fiber. The light separating section has a plurality of splitting transmissive surfaces which are vertical surfaces with respect to the optical axis of the light reflected at the reflecting surface and a plurality of splitting reflecting surfaces which are inclining surfaces with respect to the optical axis of the light reflected at the reflecting surface. The splitting transmissive surfaces and the splitting reflecting surfaces are alternately disposed in a first direction and in a second direction.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: May 31, 2016
    Assignee: Enplas Corporation
    Inventor: Masahiro Tanazawa
  • Patent number: 9354086
    Abstract: The invention relates to a fiber optic measuring apparatus and a related method which includes a number of sensors which are integrated in a cable and detect a mechanical load, a temperature and/or corrosive gases, characterized in that the sensors are supplied with light from a source and the sensors form a fiber optic network.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: May 31, 2016
    Assignee: Draka Cable Wuppertal GmbH
    Inventors: Reinhard Osenberg, Nico Emde, Peter Funken
  • Patent number: 9354393
    Abstract: A method for polishing photonic chips is described. A gauge is placed in a photonic chip adjacent to an edge to be polished. The gauge includes a set of bars of various lengths. The bar lengths can be progressively ordered from shortest to longest or vice versa. The photonic chip is then secured in a chip polishing jig to get ready for polishing. When the photonic chip is being polished, an operator can visually inspect the gauge by looking at the polishing edge to estimate a polishing depth in order to determine a stopping point for polishing. Once the stopping point has been reached, the polishing of the photonic chip can be stopped.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: May 31, 2016
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Andrew T S Pomerene, Matthew A. Gregory
  • Patent number: 9354412
    Abstract: Optical interconnect fabrics and optical switches are disclosed. In one aspect, an optical interconnect fabric comprises one or more bundles of optical broadcast buses. Each optical broadcast bus is optically coupled at one end to a node and configured to transmit optical signals generated by the node. The optical fabric also includes a number of optical tap arrays distributed along each bundle of optical broadcast buses. Each optical tap array is configured to divert a portion of the optical power associated with the optical signals carried by a bundle of optical broadcast buses to one of the nodes.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: May 31, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Nathan Lorenzo Binkert, Moray McLaren, Michael Renne Ty Tan, Alan Lynn Davis
  • Patent number: 9341770
    Abstract: An optical fiber connector embedded with a Bragg grating includes: a ferrule formed with a reception unit for inserting and fixing a temperature compensation connection port from one end, a space unit extended from the reception unit toward inside, and an optical fiber insertion hole penetrating a side surface of the other end along a center of an axial direction from an inclined surface gradually narrowed toward inside of the space unit; the temperature compensation connection port formed with a connection unit contacting with the reception unit of the ferrule, an optical fiber support unit having an outer diameter smaller than an inner diameter of the space unit of the ferrule from the connection unit and protruding to be spaced apart from an inlet of the ferrule by a predetermined distance to form a space for accommodating the Bragg grating and support an optical fiber, and the optical fiber insertion hole penetrating both ends along the center of the axial direction to insert the optical fiber; an optical
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: May 17, 2016
    Assignee: MEL TELECOM INC.
    Inventors: Byoung Whi Kim, Mahn Yong Park, Gil Dong Lee, Geon Jeong
  • Patent number: 9335224
    Abstract: A sensing cable includes a pair of sensing fibers that are connected to one another by a U-shaped turnaround section. The turnaround section is a section of sensing fiber coated with a jacket that includes metallic components. The turnaround section is bent and, then, annealed according to a method of the present invention. The turnaround section is robust and reduced in size (i.e., radius). The sensing cable also includes an inner sleeve that surrounds the sensing fibers and an elongated outer armor casing (i.e., including an armor tube and a sealing cap) that encases a terminating end thereof. The armor tube and the sealing cap protect the sensing fiber from mechanical and chemical harm, are reduced in size and facilitate insertion of the sensing cable into downhole environments. The sensing cable has improved operating range up to 300° C.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 10, 2016
    Assignee: QOREX LLC
    Inventors: Trevor Wayne MacDougall, Paul Eric Sanders
  • Patent number: 9328010
    Abstract: The invention is a method for structuring a flat substrate composed of glass material in the course of a viscous flow process. The glass flat substrate is joined to a surface of a flat substrate, which is preferably a semiconductor flat substrate, having at least one depression bounded by a circumferential edge located in the surface. In the course of a subsequent tempering process, glass material is changed to a viscous free-flowing state in which at least proportions of the free-flowing glass material of the flat substrate flow over the circumferential edge into the depression in the flat substrate.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 3, 2016
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Norman Marenco, Hans-Joachim Quenzer
  • Patent number: 9323017
    Abstract: Provided are an optical module, and an optical printed circuit board and a method of manufacturing the same. The optical module includes an optical fiber, a first ferrule coupled to one end of the optical fiber, and a second ferrule coupled to the other end of the optical fiber. The optical printed circuit board includes a first board, an optical transmitter module and an optical receiver module, which are disposed on the first board, an optical fiber passing through the first board, the optical fiber extending integrally from a lower side of the optical transmitter module to a lower side of the optical receiver module, first and second ferrules coupled to one end and the other end of the optical fiber, respectively, the first and second ferrules being supported by the first board, and a second board through which the optical fiber passes, the second board being disposed below the first board.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: April 26, 2016
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jae Bong Choi, Joon Wook Han
  • Patent number: 9316785
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a III-V material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermitically seals the chip in the platform.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: April 19, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9310580
    Abstract: A method and spacer for assembling flexible optical waveguide ribbons and assembled stack of such ribbons. The method includes the steps of: providing at least two optical waveguide ribbons and a spacer, which includes at least two calibrated spaces; positioning a ribbon stack in the spacer, where the ribbon stack includes the at least two optical waveguide ribbons stacked on top of each other; constraining positioned ribbon stack in one of the calibrated spaces; and fixing constrained ribbon stack in the calibrated spaces.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger F. Dangel, Daniel S. Jubin, Tobias P. Lamprecht, Bert Jan Offrein
  • Patent number: 9309143
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: April 12, 2016
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Patent number: 9304268
    Abstract: An optical interposer comprising: (a) a crystalline substrate having a top planar surface and a crystalline plane angle; (b) a groove defined in the top planar surface and extending from an edge of the substrate to a terminal end, the groove having side walls and a first facet at the terminal end, the facet having a first angle relative to the top planar surface, the first angle being about the crystalline plane angle, the first angle having a delta from 45°; (c) a reflective coating on the first facet; and (d) an optical conduit having an optical axis and an end face optically coupled with the first facet, the end face having a second angle with respect to the optical axis such that the angle of refraction at the end face compensates for the delta such that the end face and the first facet cooperate to bend light about 90°.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 5, 2016
    Assignee: Tyco Electronics Corporation
    Inventors: Lou Castagna, Richard Dean Miller, Shelly Ann Buchter
  • Patent number: 9297952
    Abstract: An optical fiber, including (i) an inner core having an ?-power refractive index profile, (ii) an outer core having a refractive index of n1?, and (iii) a cladding having a refractive index of n2 (n1?<n2<n1), is configured such that a depth of a trench, defined by n2?n1?, is sufficiently increased.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: March 29, 2016
    Assignee: FUJIKURA LTD.
    Inventors: Ryo Maruyama, Nobuo Kuwaki, Shoichiro Matsuo, Masaharu Ohashi
  • Patent number: 9297480
    Abstract: According to the present invention there is provided a method for installing a sensing cable along a pipeline, comprising the steps of, attaching one or more conduits to an outer-surface of a pipe which is to be installed in a bore hole to form a pipeline assembly; moving the pipeline assembly into the bore hole; moving an fiber optic sensing cable into one or more of the conduit after the pipeline assembly has been moved into the bore hole or before the pipeline assembly has been moved into the bore hole. There is further provided a corresponding pipeline assembly, and a attachment head which can facilitate attachment of a pulling line to a pipeline assembly.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: March 29, 2016
    Assignee: OMNISENS SA
    Inventors: Dana Dutoit, Carlos José dos Santos Borda, Marc Niklès