Patents Examined by Wasiul Haider
  • Patent number: 11670587
    Abstract: The present disclosure provides a semiconductor device with a copper-manganese liner and a method for preparing the semiconductor device. The semiconductor device includes a first well region and a second well region disposed in a semiconductor substrate. The semiconductor device also includes a first dielectric layer disposed over the semiconductor substrate and covering the first well region and the second well region, and a gate structure disposed over the first dielectric layer and between the first well region and the second well region. The semiconductor device further includes a conductive structure disposed over and separated from the first well region by a portion of the first dielectric layer. The conductive feature includes a barrier layer and a conductive plug disposed over the barrier layer, and the barrier layer is made of copper-manganese (CuMn). The first well region, the conductive structure and the portion of the first dielectric layer form an anti-fuse structure.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: June 6, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chin-Ling Huang
  • Patent number: 11664477
    Abstract: An electrode structure includes: an indium tin oxide (ITO) electrode that includes ITO; an Al electrode that includes Al and covers the ITO electrode; and a barrier electrode that includes at least one of TiN and Cr and is interposed in a region between the ITO electrode and the Al electrode.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: May 30, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Ryosuke Ishimaru, Yohei Ito, Yasuo Nakanishi
  • Patent number: 11658212
    Abstract: Disclosed herein are quantum dot devices with conductive liners, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base, a first fin extending from the base, a second fin extending from the base, a conductive material between the first fin and the second fin, and a dielectric material between the conductive material and the first fin.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Stephanie A. Bojarski, Roman Caudillo, David J. Michalak, Jeanette M. Roberts, Thomas Francis Watson
  • Patent number: 11658100
    Abstract: A semiconductor device includes a plurality of leads, a semiconductor element electrically connected to the leads and supported by one of the leads, and a sealing resin covering the semiconductor element and a part of each lead. The sealing resin includes a first edge, a second edge perpendicular to the first edge, and a center line parallel to the first edge. The reverse surfaces of the respective leads include parts exposed from the sealing resin, and the exposed parts include an outer reverse-surface mount portion and an inner reverse-surface mount portion that are disposed along the second edge of the sealing resin. The inner reverse-surface mount portion is closer to the center line of the sealing resin than is the outer reverse-surface mount portion. The outer reverse-surface mount portion is greater in area than the inner reverse-surface mount portion.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 23, 2023
    Assignee: ROHM CO., LTD.
    Inventor: Katsuhiro Iwai
  • Patent number: 11659733
    Abstract: An optoelectronic assembly comprising an optoelectronic component, which comprises a specularly reflective surface and comprising a radiation cooler in direct physical contact with the optoelectronic component. The radiation cooler is arranged above the specularly reflective surface.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: May 23, 2023
    Assignee: Pictiva Displays International Limited
    Inventors: Dominik Pentlehner, Richard Baisl
  • Patent number: 11652098
    Abstract: Disclosed are a transistor structure for electrostatic protection and a method for manufacturing the same. The transistor structure comprises: a doped region in a substrate; field oxide layers; a first N-type well region, a P-type well region and a second N-type well region in the doped region and spaced in sequence; a first polycrystalline silicon layer and a second polycrystalline silicon layer covering part of the P-type well region; a first N+ region and a first P+ region respectively formed in the first N-type well region and the second N-type well region second P+ region and the second N+ region are close to the first N+ region and the first P+ region, respectively. The structure may change a current path under forward/reverse operation; thus, a device keeps a good electrostatic protection capability and high robustness.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: May 16, 2023
    Assignee: JOULWATT TECHNOLOGY (HANGZHOU) CO., LTD.
    Inventors: Weihuai Wang, Yang Lu
  • Patent number: 11652067
    Abstract: Methods/structures of forming substrate tap structures are described. Those methods/structures may include forming a plurality of conductive interconnect structures on an epitaxial layer disposed on a substrate, wherein individual ones of the plurality of conductive interconnect structures are adjacent each other, forming a portion of a seed layer on at least one of the plurality of conductive interconnect structures, and forming a conductive trace on the seed layer.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, Radek P. Chalupa, Flavio Griggio, Inane Meric, Jiun-Chan Yang
  • Patent number: 11652044
    Abstract: A semiconductor device includes an insulating layer, wherein the insulating layer has a via opening and a conductive line opening. The semiconductor device further includes a via in the via opening, wherein the via includes a first conductive material. The semiconductor device further includes a conductive line in the conductive line opening. The conductive line includes a first liner layer, wherein a first thickness of the first liner layer over the via is less than a second thickness of the first liner layer over the insulating layer, and a conductive fill comprising a second conductive material different from the first conductive material.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Cheng Chin, Yao-Min Liu, Hung-Wen Su, Chih-Chien Chi, Chi-Feng Lin
  • Patent number: 11652194
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: May 16, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Marino Kishi, Chie Miyamae, Susumu Kuwabata, Taro Uematsu, Daisuke Oyamatsu, Kenta Niki
  • Patent number: 11640975
    Abstract: A semiconductor device includes an emitter, a base, and a collector. A portion of the collector is located below a trench in a substrate. A collector silicide is located on at least a portion of a bottom portion of the trench and on at least a portion of a sidewall of the trench. The collector silicide structure is electrically coupled to a collector contact structure.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: May 2, 2023
    Assignee: NXP USA, INC.
    Inventors: Jay Paul John, James Albert Kirchgessner, Ljubo Radic
  • Patent number: 11640958
    Abstract: Embodiments of the present disclosure include semiconductor packages and methods of forming the same. An embodiment is a semiconductor package including a first package including one or more dies, and a redistribution layer coupled to the one or more dies at a first side of the first package with a first set of bonding joints. The redistribution layer including more than one metal layer disposed in more than one passivation layer, the first set of bonding joints being directly coupled to at least one of the one or more metal layers, and a first set of connectors coupled to a second side of the redistribution layer, the second side being opposite the first side.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: May 2, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Hsien-Wei Chen, Jie Chen
  • Patent number: 11637124
    Abstract: A semiconductor device includes a stacked structure with insulating layers and conductive layers that are alternately stacked on each other, a hard mask pattern on the stacked structure, a channel structure penetrating the hard mask pattern and the stacked structure, insulating patterns interposed between the insulating layers and the channel structure, wherein the insulating patterns protrude farther towards the channel structure than a sidewall of the hard mask pattern, and a memory layer interposed between the stacked structure and the channel structure, wherein the memory layer fills a space between the insulating patterns.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: April 25, 2023
    Assignee: SK hynix Inc.
    Inventors: Changhan Kim, In Ku Kang, Sun Young Kim
  • Patent number: 11637209
    Abstract: A vertical junction field effect transistor (JFET) includes a substrate, an active region having a plurality of semiconductor fins, a source metal layer on an upper surface of the fins, a source metal pad layer coupled to the semiconductor fins through the source metal layer, a gate region surrounding the semiconductor fins, and a body diode surrounding the gate region.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 25, 2023
    Assignee: NEXGEN POWER SYSTEMS, INC.
    Inventors: Clifford Drowley, Andrew P. Edwards, Subhash Srinivas Pidaparthi, Ray Milano
  • Patent number: 11637202
    Abstract: The present application discloses a method for fabricating a semiconductor device The method includes providing a substrate; forming a channel region in the substrate; forming a gate dielectric layer on the channel region; forming a gate bottom conductive layer on the gate dielectric layer; forming first impurity regions on two ends of the channel region; forming first contacts on the first impurity regions; forming programmable insulating layers on the first contacts; forming a gate via on the gate bottom conductive layer; and forming a top conductive layer on the gate via and the programmable insulating layers.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: April 25, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chang-Chieh Lin
  • Patent number: 11631787
    Abstract: In one embodiment, the optoelectronic semiconductor chip comprises a semiconductor layer sequence with an active zone for generating a radiation. The semiconductor layer sequence is based on AlInGaP and/or on AlInGaAs. A metal mirror for the radiation is located on a rear side of the semiconductor layer sequence opposite a light extraction side. A protective metallization is applied directly to a side of the metal mirror facing away from the semiconductor layer sequence. An adhesion promoting layer is located directly on a side of the metal mirror facing the semiconductor layer sequence. The adhesion promoting layer is an encapsulation layer for the metal mirror, so that the metal mirror is encapsulated at least at one outer edge by the adhesion promoting layer together with the protective metallization.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: April 18, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Sebastian Pickel, Johannes Saric, Wolfgang Schmid, Anna Strozecka-Assig, Johannes Baur
  • Patent number: 11631739
    Abstract: A method for producing a transistor includes producing on a substrate provided with a semiconductor surface layer in which an active area can be formed, a gate block arranged on the active area. Lateral protection areas are formed against lateral faces of the gate block. Source and drain regions based on a metal material-semiconductor material compound are formed on either side of the gate and in the continuation of a portion located facing the gate block. Insulating spacers are formed on either side of the gate resting on the regions based on a metal material-semiconductor material compound.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: April 18, 2023
    Assignee: Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Fabrice Nemouchi, Antonio Lacerda Santos Neto, Francois Lefloch
  • Patent number: 11611444
    Abstract: A physically unclonable function (PUF) device 1 capable of exhibiting a unique quantum mechanical effect as a result of quantum mechanical confinement exhibited by the device 1. The device 1 comprises a group IV semiconductor heterostructure. The group IV semiconductor heterostructure may comprise Silicon/Germanium. The device 1 may comprise a group IV semiconductor resonant tunnelling diode (RTD). A Si-integrated circuit, method, use, and apparatus are also provided.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 21, 2023
    Assignee: QUANTUM BASE LIMITED
    Inventor: Robert James Young
  • Patent number: 11610993
    Abstract: Aspects of the disclosure provide a method of forming a semiconductor apparatus including a first portion and a second portion. The first portion is formed on a first substrate and includes at least one first semiconductor device. The second portion is formed on a second substrate including a bulk substrate material and includes at least one second semiconductor device. A carrier substrate is attached to the second portion. The bulk substrate material is removed from the second substrate. The first portion and the second portion are bonded to form the semiconductor apparatus where the at least one second semiconductor device is stacked above the at least one first semiconductor device along a Z direction substantially perpendicular to a substrate plane of the first substrate. The at least one first semiconductor device and the at least one second semiconductor device are positioned between the carrier substrate and the first substrate.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: March 21, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11605721
    Abstract: An electrode with multiple metallic-layers structure formed by a magnetron sputtering technique for a semiconductor device and method for producing same is disclosed. The ceramic device includes at least one from selected group consisting of ZnO-MOV (metal oxide varistors), BaTiO3-PTC (positive temperature coefficient) thermistors, Mn3O4-NTC (negative temperature coefficient) thermistors, and capacitors. The multiple metallic-layers include a sputtered buffer layer and a sputtered electrical contact layer. The buffer layer includes at least one alloy selected form group consisting of NiCr (Ni from 50-90 wt %), TiNi (Ti from 40-60 wt %), and AlNi (Al from 40-70 wt %) and the thickness of this layer is from greater than zero to less than 100 nm. The electrical contact layer includes at least one of Cu, Ag, Pt, Au, or combination. More specifically, the electrode includes one of NiCr/Cu system, NiCr/Ag system, NiCr/Cu/Ag system, TiNi/Cu/Ag system, or AlNi/Cu/Ag system.
    Type: Grant
    Filed: August 30, 2020
    Date of Patent: March 14, 2023
    Inventors: Kaixuan Shi, Haodian Shi, Yanqing Wu, Anping Hu, Xibei Yu
  • Patent number: 11605738
    Abstract: This disclosure relates to the field of display technologies, and discloses a thin film transistor, a method for fabricating the same, a method for controlling the same, a display panel, and a display device. The thin film transistor includes: a base substrate, a semiconductor active layer on one side of the base substrate, a source electrically connected with one end of the semiconductor active layer, a drain electrically connected with the other end of the semiconductor active layer, a gate insulated from the semiconductor active layer, the source, and the drain, and a modulation electrode insulated from the semiconductor active layer, the gate, the source, and the drain.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: March 14, 2023
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Junjie Li, Yuanyuan Li