Patents Examined by William D. Coleman
  • Patent number: 8859379
    Abstract: A non-planar semiconductor with enhanced strain includes a substrate and at least one semiconducting fin formed on a surface of the substrate. A gate stack is formed on a portion of the at least one semiconducting fin. A stress liner is formed over at least each of a plurality of sidewalls of the at least one semiconducting fin and the gate stack. The stress liner imparts stress to at least a source region, a drain region, and a channel region of the at least one semiconducting fin. The channel region is located in at least one semiconducting fin beneath the gate stack.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8860216
    Abstract: A method and system for providing a laser diode submount for use in an energy assisted magnetic recording disk drive are described. A portion of a silicon substrate is removed, forming trenches therein. Each trench has sidewalls, surrounds a silicon island corresponding to a laser diode submount, and corresponds to a thickness of the laser diode submount. The silicon island has a top surface and a facets corresponding to the trench sidewalls. Insulator(s) for the top surface and facets of the silicon island are provided. Metallization is provided on the top surface and facets of the silicon island. A first portion of the metallization on the top surface corresponds to under bump metal (UBM) for solder pad(s). A second portion of the metallization corresponds to electrical traces. Solder pad(s) are provided on the UBM. The silicon island is released from the silicon substrate.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 14, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Zongrong Liu, Pezhman Monadgemi
  • Patent number: 8853661
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and resistive switching layer connected in series. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state, thereby preventing over-programming. The embedded resistor includes aluminum, nitrogen, and one or more additional metals (other than aluminum). The concentration of each component is controlled to achieve desired resistivity and stability of the embedded resistor. In some embodiments, the resistivity ranges from 0.1 Ohm-centimeter to 40 Ohm-centimeter and remains substantially constant while applying an electrical field of up 8 mega-Volts/centimeter to the embedded resistor. The embedded resistor may be made from an amorphous material, and the material is operable to remain amorphous even when subjected to typical annealing conditions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 7, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Mihir Tendulkar, Randall J. Higuchi, Chien-Lan Hsueh
  • Patent number: 8853824
    Abstract: An enhanced tunnel field effect transistor includes a substrate, a layer of P-I-N structure, a hetero-material layer, a gate dielectric layer, a gate structure and a spacer, in which the layer of P-I-N structure is disposed on the substrate, the hetero-material layer is disposed on portion of the layer of P-I-N structure, the gate dielectric layer is disposed on the hetero-material layer, the gate structure is disposed the gate dielectric layer and a spacer is disposed on a sidewall of the hetero-material layer, the gate dielectric layer, and the gate structure. The hetero-material layer can increase the tunneling efficiency of the enhanced tunnel field effect transistor to increase the conductor current to improve the enhanced tunnel field effect transistor performance.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: October 7, 2014
    Assignee: National Chiao Tung University
    Inventors: Pei-Yu Wang, Bing-Yue Tsui
  • Patent number: 8853764
    Abstract: A method for forming a low Rdson LDNMOS and a high sheet resistance poly resistor and the resulting device are provided. Embodiments include forming first, second, and third STI regions in a substrate; forming a P-well in the substrate around the first STI region with a first mask; forming an N-drift region in the substrate between the P-well and the third STI region with the first mask; forming a dielectric layer over the substrate; forming a poly-silicon layer over the dielectric layer; performing an N-drain implant between the second and third STI regions with a second mask; performing a resistance adjustment implant in, but not through, the poly-silicon layer with the second mask; and patterning the poly-silicon and dielectric layers subsequent to performing the resistance adjustment implant to form a gate stack and a poly resistor, the poly resistor being formed over the third STI region and laterally separated from the gate stack.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 7, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd
    Inventors: Guowei Zhang, Deyan Chen
  • Patent number: 8853768
    Abstract: A method for fabricating a semiconductor device is provided. The method includes forming a plurality of gate structures having asymmetric sidewalls including a tall side and a short side. Adjacent ones of the plurality of gate structures are separated by a tall side-tall side region and a short side-short side region. The method further comprises forming a spacer layer over the plurality of gate structures and a bottom surface of the tall side-tall side region and the short side-short side region, depositing an oxide layer over the spacer layer, etching the bottom surface portions of the oxide layer, and selectively etching the sidewall portions of the oxide layer in the tall side-tall side region.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Chiang Min, Tsung-Hsueh Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 8853868
    Abstract: A method of fabricating semiconductor structures comprising sub-resolution alignment marks is disclosed. The method comprises forming a dielectric material on a substrate and forming at least one sub-resolution alignment mark extending partially into the dielectric material. At least one opening is formed in the dielectric material. Semiconductor structures comprising the sub-resolution alignment marks are also disclosed.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David S. Pratt, Marc A. Sulfridge
  • Patent number: 8852965
    Abstract: The terminating layer that covers the top layer of a GaN-based semiconductor having a principal surface which is either a non-polar plane or a semi-polar plane, is removed by performing an organic solvent cleaning process step, and replaced with an organic solvent cleaned layer. Next, by irradiating the semiconductor with an ultraviolet ray, the organic solvent cleaned layer is removed to form a surface-modified layer instead. By performing these process steps, the top layer of the GaN-based semiconductor becomes the surface-modified layer and an electrical polarity is given to the surface of the GaN-based semiconductor. As a result, the hydrophilicity, hydrophobicity and wettability of the GaN-based semiconductor can be controlled.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujikane, Akira Inoue, Toshiya Yokogawa
  • Patent number: 8851970
    Abstract: The present invention teaches novel methods for simultaneous indication of winning combinations in the symbol matrix. More specifically, the present invention simultaneously indicates all winning combinations formed by symbols appearing in symbol positions common to multiple pay lines. In a preferred embodiment, symbol positions common to multiple pay lines that display winning symbol combinations are simultaneously indicated to the player in a first manner. In addition, the remaining symbol positions for each of said multiple pay lines are simultaneously indicated in a second manner.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 7, 2014
    Assignee: IGT
    Inventors: Antony Mark Singer, T. Grant Bolling, Jr., Daniel Mordecai Marks
  • Patent number: 8846529
    Abstract: A method for forming an on-chip magnetic structure includes forming a seed layer over a substrate of a semiconductor chip. The seed layer is patterned to provide a plating location. A cobalt based alloy is electrolessly plated at the plating location to form an inductive structure on the semiconductor chip.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 8846504
    Abstract: A method of growing GaN material on a silicon substrate includes providing a single crystal silicon substrate with a (100) surface orientation or a (100) with up to a 10° offset surface orientation and using epi-twist technology, epitaxially growing a single crystal stress managing layer on the silicon substrate. The single crystal stress managing layer includes rare earth oxide with a (110) crystal orientation and a cubic crystal structure. The method further includes epitaxially growing a single crystal buffer layer on the stress managing layer. The single crystal buffer layer includes rare earth oxide with a lattice spacing closer to a lattice spacing of GaN than the rare earth oxide of the stress managing layer. Epitaxially growing a layer of single crystal GaN material on the surface of the buffer, the GaN material having one of a (11-20) crystal orientation and a (0001) crystal orientation.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 30, 2014
    Assignee: Translucent, Inc.
    Inventors: Rytis Dargis, Andrew Clark, Erdem Arkun, Radek Roucka
  • Patent number: 8847238
    Abstract: A semiconductor layer 102 having a drift region 132, a body region 103, and a source region 104 provided at a position next to the body region 103; an epitaxial layer 106 in contact with the body region; and a gate insulating film 107 provided on the epitaxial layer are formed on a principal surface of a semiconductor substrate 101. The epitaxial layer includes an interface epitaxial layer 106i in contact with the body region, a first epitaxial layer 106a on the interface epitaxial layer 106i, and a second epitaxial layer 106b on the first epitaxial layer 106a. An impurity concentration of the interface epitaxial layer is higher than an impurity concentration of the first epitaxial layer, and lower than an impurity concentration of the second epitaxial layer.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Kiyosawa, Masao Uchida, Nobuyuki Horikawa, Koutarou Tanaka, Kazuhiro Kagawa, Yasuyuki Yanase, Takashi Hasegawa
  • Patent number: 8846419
    Abstract: A process can be used for producing a thin layer solar cell module with a plurality of segments that are electrically connected in series and arranged on a common substrate. The process has steps for application of layers onto the substrate to form at least one electrode and one photoactive layer sequence and has steps for structuring the applied and/or to be applied layers to form the plurality of segments. At least one electrode and one photoactive layer sequence are applied before structuring steps are carried out.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: September 30, 2014
    Assignee: Wilhelm Stein
    Inventor: Wilhelm Stein
  • Patent number: 8841220
    Abstract: The light extraction surface of a nitride semiconductor light-emitting element, including a crystal plane other than a c plane, is subjected to a surface modification process to control its wettability, and then covered with a layer of fine particles. By etching that layer of fine particles after that, an unevenness structure, in which roughness curve elements have an average length (RSm) of 150 nm to 800 nm, is formed on the light extraction surface.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: September 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujikane, Akira Inoue, Toshiya Yokogawa
  • Patent number: 8841163
    Abstract: A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Hiroki Ohara
  • Patent number: 8835889
    Abstract: A thermally assisted magnetic memory cell device includes a substrate, a first electrode disposed on the substrate, a magnetic tunnel junction disposed on the first electrode, a second electrode disposed on the magnetic tunnel junction, a conductive hard mask disposed on the second electrode and a parallel shunt path coupled to the magnetic tunnel junction, thereby electrically coupling the first and second electrodes.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, John K. De Brosse, Philip L. Trouilloud, Daniel C. Worledge
  • Patent number: 8835229
    Abstract: A chip identification for organic laminate packaging and methods of manufacture is provided. The method includes forming a material on a wafer which comprises a plurality of chips. The method further includes modifying the material to provide a unique identification for each of the plurality of chips on the wafer. The organic laminate structure includes a chip with a device and a material placed on the chip which is modified to have a unique identification mark for the chip.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Albert J. Banach, Timothy H. Daubenspeck, Wolfgang Sauter
  • Patent number: 8835256
    Abstract: A system and method for fabricating a memory array device. An example memory array device includes a plurality of memory cells, each including a FET over a substrate and a memory element over the FET. Each memory element includes a plurality of epitaxially grown memory element layers. The memory array device includes a plurality of gate conductors configured a first axis, in parallel. Each gate conductor laterally surrounds a plurality of FETs of the memory cells along the first axis. The memory array device includes a plurality of bit lines configured along a second axis, in parallel, and electrically coupled to a plurality of memory elements along the second axis. Embodiments of the memory array preserve alignment of crystal lattices beginning from the bottom layers in the FET up to the top active layers in memory element, thus preserving crystal lattice alignment between transistor and memory element.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: John K. DeBrosse, Chung H. Lam, Janusz J. Nowak
  • Patent number: 8828856
    Abstract: Provided is a TFT substrate (10) on which vapor-deposited sections are to be formed by use of a vapor deposition device (50) which includes a vapor deposition source (85) having injection holes (86); and a vapor deposition mask (81) having opening (82) through which vapor deposition particles are deposited to form the vapor-deposited sections. The TFT substrate (10) includes pixels two-dimensionally arranged in a pixel region (AG); and wires (14) electrically connected to the respective pixels. The vapor-deposited sections (Q) are formed with gaps (X) therebetween, and the wires (14) having respective terminals that are disposed in the gaps (X).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8829563
    Abstract: An insulated gate bipolar device is disclosed which can include layers of different conductivity types between an emitter electrode on an emitter side and a collector electrode on a collector side in the following order: a source region of a first conductivity type, a base layer of a second conductivity type, which contacts the emitter electrode in a contact area, an enhancement layer of the first conductivity type, a floating compensation layer of the second conductivity type having a compensation layer thickness tp, a drift layer of the first conductivity type having lower doping concentration than the enhancement layer and a collector layer of the second conductivity type.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: September 9, 2014
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Marco Bellini, Maxi Andenna, Friedhelm Bauer, Iulian Nistor